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In [3], S. M. Ulam proposes many problems. Here I shall solve three
of these problems and propose some generalizations. The first is a problem
on what Ulam calls Peano mappings, the second is a problem on sets
and cardinality, and the third is a question on product-automorphisms
(which will be defined later on).

On p. 32 of his book [3], S. M. Ulam states the following problem:

4. A problem on Peano mappings

Let R be the set of positive rational integers with the usual operations a4+ b
= 8(a,b) and a'b = m(a, b). Every one-to-one (Peano) mapping ¢ = p(a, b) on
R x E to all of B may serve to associate with s (a, b) and m (a, b) two functions ¢ and u
on B to B by the definitions o(c) = o(p(a, b)) = s(a, b), and u(c) = u(p(a,d))
= m(a, b). Does there exist a Peano mapping p (4, b) such that “addition commutes
with multiplication” in the sense that o(u(c)) = u(o(c)) for all ¢ of B? To illustrate,
we note that the well-known Peano mapping ¢ = p(a, b) = 26—1(2b—1) fails. For,
o(p(14)) = o(u(22"1-[2:4—1])) = 0(8) = o(2-1-[2:1~1]) = 5, while u(a(14))
= p(o(2271-[2:4 1)) = p(6) = p(22-1-[2-2—-1])) = 4.

This problem is solved in [1] by violating the finiteness of the number
of factorizations of a positive integer into two positive integers. The
equality u(n) = u(2n —3) is obtained and is applied to the sequence
given by a, =4 and a;,, = 24, —3. (Any value may be chosen for a,
as long as it is greater than 3.)

We shall present a proof here which is essentially the same as the
proof given in [2] and depends on violating the one-to-oneness of the
function p. This method of proof may also be more applicable to generali-
zations of this problem.

It is easily shown that a function p having the properties stated
in the problem cannot exist.

Suppose that such a function p exists. We evaluate p~(4), p~*(5),
and p~!(6); a contradiction can then be obtained by investigating

o{ulp(2,3)]} and u{o[p(2,3)1}
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We get p~'(4) = (2,2), p~'(5)e {(1,4), (4, 1)}, p~'(6)e {1, 5), (5, 1)}
The function p is surjective (onto), so there exist ¢ and b in R such
that p(a, b) = 4. Hence

a+b=oc[pla,b)] =0(4) =0(2:2)
=o{ulp(2,2)]} = u{c[p(2,2)]}
= pu(2+2) = pu(4) = plp(a, d)]
= ab

and the only solution in positive integers of a +b = ab is (a, b) = (2, 2).
So p(2,2) =4 and o(4) = 4 = u(4).

Now we evaluate p~'(5) and p~'(6). Firstof all, o {u[p(1,4)]} =o(1-4)
=o(4) =4, and p{o[p(L, 4))} = p(1+4) = u(5), so we get u(5) = 4.

Say (a’, b') = p~'(5), then 4 = u(5) = u[p(a’, b')] = a’b’, which has
{(1,4),(2,2), (4,1)} as the set of all positive integer solutions. But p(2, 2)
=4, so we are left with (a’, d’)e {(1, 4), (4,1)}. Thus 5 = o[p(a’, b’)]
= o(5).

Secondly, wehave o {u[p(1,5)]} =0o(1:5) =0(d) =dand u{c[p(1,5)]}
= u(1+5) = u(6), so we get u(6) =3. As with p~'(5), we see that
p~(6)¢{(1,5), (5,1)}, whence 4(6) = 6.

Finally, we get the desired contradiction by comparing o{u[p(2, 3)]}
with u{c[p(2,3)]}. Indeed, o{u[p(2,3)]} =0(2-3) =0(6) =6, but
pi{o[p(2,3)]} = p(2+3) = pu(5) =4 #6.

Therefore, a function p a3 described in the problem cannot exist.

Note. The solution given to the problem does not require that p
be surjective, only that certain integers be in the image of p and certain
ordered pairs be in the domain of p. This suggests the following gener-
alization of the problem (using the notation of the problem):

Let 8 be a subset of R and let ¢ be an injection (one-one map) of §
into R X R. Define functions ¢ and x4 that map § into R by o(¢) = s[q(¢)]
and u(¢) = m[g(e)]. Do there exist such a set § and such a function ¢
satisfying:

(i) § 2 o(8) and 8 2 u(8),

(ii) u[o(e)] = a[u(c)] for all ¢ in 8,

(iii) 8 is infinite?

The solution presented earlier says that there is no such set § and
function ¢ satisfying (i) and (ii) if we have 4¢ 8, {(1, 4), (4, 1)}nq(8S) # 9,
{(1, 5), (5, 1)}ng(8) # B, {(2, 3), (3, 2)}Ng(8) #O.

Observe that the generalization above is a generalization of the
function p (although we use ¢ = p~'). Generalizations of the set R to
the positive rationals, positive reals, or other fully ordered domains,
can be stated.
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On page 15 of [3] the following problem appears:

Let 4 and B be infinite sets which admit a transfinite sequence of point trans-
formations t;(a) ¢ B, a € A, with the properties: (1) t;(X)-t¢(¥Y) = O0Ofor X < 4, Y < A4,
and some £ implies ¢, (X)-t,(Y) = 0 for all » > &; (2) for every infinite subset X < 4
there exists a & such that ¢{;(X) contains at least two distinet points; (3) X:¥ =0
for finite X, ¥ implies existence of % such that ¢,(X)-t,(¥Y) = 0.

Is the power of A necessarily less than or equal to that of B?

We shall soon see that:
(I) Condition (2) is redundant.

(II) An upper bound on the power of A dependent upon the powers
of other sets mentioned in the problem will be given.

(III) The power of A can be greater than the power of B.

(I) Condition (2) follows from condition (3).

Let X be an infinite subset of A and pick any two distinct elements
of X, say x, and x,. Clearly, both {x,} and {x,} are finite, and satisfy
{w,}n{x,} = GB. By (3) there exists an # such that #,({z,})Nt,({z,}) = 9.
This is just {t,(x,)}N{t,(x,)} =G which is equivalent to t,(x,) # 1,(x,),
hence t,(X) contains at least two distinct elements. Note that we only
needed |X|> 1.

(II) Let I be the index set for the sequence of point transformations.
Condition (3) implies 4| < |B|"\.

Define the function 7: A—B' by T(a) = <i,(a): ne I) for all a in A.
Clearly, T is a monomorphism of A into B! by condition (3) (see solution
of (I)). Therefore

4| < |BY| = |B|"\.

(III) The power of A can be greater than the power of B. In the
example that I will present, A and B will be familiar sets; A will be the
continuum and B will be the subset of the rationals that consists of ele-
ments of the form %/2", where k is an integer and » is a natural number.

Let 4 be the natural numbers with the usual ordering. We shall
use A4~ as the index set for the point transformations and to construct B.
Let Z be the set of integers and let [ ] be the familiar ‘‘greatest integer”
function. Finally, let A be the real numbers, B, = {k/2": ke Z} for all
ne N, and B = (J{B,: neA#} = {k/2": keZ & ne &#'}. Define the se-
quence {t,: ne N} of maps of A into B by t,(a) = [2"a]/2"™

A few simple observations and a very elementary lemma will aid
us in verifying that conditions (1) and (3) hold. For all ne 4, the image
of ¢, is B,. For all m and » in &, if m < n, then B, > B,,. Each ¢, is
a monotonically increasing function and satisfies i,[t,(2)] = t,(2) (i.e.
t, is a projection). B is dense in A.
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LEMMA. Let X and Y be subsets of A and let ne 4.
t,(X)Nt, (Y) = O if and only if one of the following conditions holds:
(i) X =0,
(ii) ¥ =9,
(iii) each pair of elements, one from X the other from Y, is separated
by an element of B,,. (L.e., if x in X and y in Y satisfy x < y (y < x), then
there is a b in B, such that x <b<y (y < b< x).)

Proof. Necessity. Each of conditions (i) and (ii) clearly implies
that ¢,(X)nt,(Y) = 0O.

Say (iii) holds and suppose that ¢,(X)Nt,(Y) is non-null. Then there
exist zeX and yeY such that {,(x) = t,(y). Without loss of generality
we may assume that # < y. By hypothesis, there exists b in B, that lies
between x and y (i.e. * < b < y); then by the definition of ¢, and its mono-
tonicity we have {,(x) <1,(b) <1?,(y), which contradicts our supposi-
tion that {,(x) = {,(y). Consequently, our supposition was false, and so
t,(X)nt, (YY) =0. ‘

Sufficiency. Say (i) and (ii) do not hold. We must show that (iii)
holds.

Both X and Y are non-empty; pick any « in X and y in Y. Without
loss of generality we may assume that ¢ < y since the case y < « is handled
identically.

The function ?¢, is monotonic, whence ?,(x) <t,(y). This must be
a strict inequality since ?,(X)Nt,(Y) =@ (by hypothesis). From the
definition of ¢, we see that {,(2) < zand?,[t,(2)] =1,(2). Sot, () <t,(y)<y
and t,(r) < 2.

Compare z with ¢,(y). The inequality ¢,(y) <« is impossible since
this would imply ¢,(y) =1t,[t.(v)] <1, (x) contradicting ¢,(z)<t{,(y).
Thus = < ¢,(y), whence t,(y) can be chosen as the element of B, separating
the pair of elements z and y, g.e.d.

Condition (1) of Ulam’s problem can now be demonstrated. We
have t,,(X)Nt,, (Y) = @. Pick any » in the index set (A") satisfying m < n.
By the lemma, one of the following holds: X =@, or ¥ =@, or the
elements of X are pairwise separated from the elements of ¥ by elements
of B,,. This last statement can have B, replaced by B, since B, > B,,,
whence the ‘‘if’’ portion of the lemma yields ¢,(X)Nnt,(Y) = 9.

Condition (3) is easily established. If X =@ or Y =@, then the
stated result clearly holds. So assume that X and Y are finite non-null
sets. Note that B is dense in A and XNY =@, so for any # in X and
y in Y there exists an element of B that separates them. Select one such
element for this pair and call it b(z, y). Both X and Y are finite, so
{b(x,y): xeX &yeY} is finite. Hence there exists » in A4 such that

B, o {b(x,y): vreX &yeX}.
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Therefore t,(X)Nt,(Y) =@ by the lemma.

Finally, page 5 of [3] has the following development arriving at.
the problem “Does there exist, for every », a set having exactly n» product-
automorphisms %”

3. Product-isomorphisms and some generalizations

The direct product A X B of two sets A and B is the set of all ordered pairs.
(o, b) with @ in 4 and b in B. Analogously the produot IT 4; is the set of all sequences.
{a;, ag, ...} with a;in 4;. Incage all 4; = 4 andi = 1, ..., n, we shall write I 4; = A™.

Two subsets A and B of a product E? are said to be product-isomorphic in case
there exists a one-one transformation f(x) on E to all of F such that the resulting
transformation

@, y) > (f(=),f(¥)

of E? to itself takes A into all of B. The relation of product-isomorphism is reflexive,.
symmetric, and transitive, and thus constitutes an equivalence relation on subsets.
of E? which divides the class of all such subsets into mutually disjoint subclasses of
sets, product-isomorphic among themselves.

The first questions that arise in connection with this relation concern enume-
ration properties. It is obvious that sets of different cardinal numbers cannot be
product-isomorphie. (...)

A product-isomorphism of a subset A with itself is called a product-automorphism.
The number of product-automorphisms of a subset A of E?2, different on A, is in
general 2¢ when E has power c¢; this is true, for example, when 4 = E2. Onc casily
constructs examples of sets A4 which have only a finite number of product-auto-
morphisms, in particular, some which admit only the identity as such an automor-
phism. Does there exist, for every n, a set having exactly n product-automorphisms *

We swiftly see that, for every n > 0, there exist sets £ and A such
that A has exactly » product-automorphisms. Let E be the group of
integers modulo n and put

A = {(k, k+1): ke E}.

It is easy to check that f(k) determines the values of f(k+1) and
f(k—1) as f(k)+1 and f(k) —1, respectively. By mathematical induction,
the value of f(0) determines the function f everywhere. Also, f(0) can
be any element of £ and |E| = n. Thus A has exactly n product-auto-
morphisms.

In general, it is trivial to show that the product-automorphisms.
form a group under the operation of function composition. For the par-
ticular example given above, the product-automorphisms formed a cyeclic.
group of order m.

Another question that can be asked is:

Can every group be realized as the group of product-automorphisms
of a set A that is a subset of E*?

Letting E be the group of integers and taking A as above, we see
that the infinite cyclic group can be realized as the group of product-
automorphisms of a set.
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