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1. Preliminaries. Throughout, », b, r, k, A and t denote positive
integers. The standard binomial coefficient, “v take k”, is denoted by (;:)

For a set X, |X| denotes the cardinality of X. Let # be a finite set (of
points) and & a list of subsets (called blocks) of 2. For X c 2, we let [X]
denote {B|B e # and X < B}. For a single point P € #, we write [P]
for [{P}]. For Be @, we put B’ = # —B and #' = {B’|B € #}.

Definition 1.1. (2, #) is a (v, b, 7, k, 1) l-design if

1. |?] =0, |B] = b;

2. for each P €2, |[P]]| = r;

3. for each Be 4, |B| = k;

4. for each X c 2 with |X| =1, |[[X]] = 4.

For t = 2, 2-designs are known as block designs. We use these terms
interchangeably. To avoid trivial ¢-designs we assume v > k > t. Gener-
ally, we also wish to exclude the trivial complete designs which arise
when all (Z) subsets of # of the appropriate size are taken as blocks.
It should be noted that no nontrivial ¢-designs are known for ¢ > 6. In the
sequel we construct several new families of 2-, 3-, 4-, and 5-designs.

For t-designs the following well-known “coming down” relation
holds (see [6] for a proof):

THEOREM 1.1. If (#, #) 8 a (v, b, 1, k, A) t-design, then (P, B) 18 also
a (v, b, r, k, A’) 8-design for any 8 < t, where A’ satisfies

e(i2)-2G)
As notational convenience we will use 4, 4_,, ...y 4;, 4, to denote
the sequence of A’s occurring by way of Theorem 1.1 from a (v, b, 1, k, 4)
t-design. The number of blocks through any point is given by 4,, and

thus A, = r. Likewise, 4, is the total number of blocks, and hence 4, = b.
The simplest extension theorem for ¢-designs is obtained as follows:
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If (#, @) is a (v, b, 7, k, A) t-design, then by taking » distinct copies of the
design, all on the point set #, we obtain a (v, nb, nr, k, nd) t-design. Such
multiple designs are occasionally useful.

2. Composing t-designs. The theorems of this section combine or
enlarge given t-designs to produce new i¢-designs. The next theorem is
a good example of such a composition theorem.

THEOREM 2.1. If there exist (v, b, r, k, A) and (v, b', »', k+1, A") t-designs
and b = r+1r', then there exists a (v+1,b+b',b, k+1, A+ 1') t-design.

Proof. Let (#, #) denote a (v,b,r,k, ) i-design and (£, H,) a
(v, b, 7', k+1, A') t-design. Let #* = #U{oo} and #+ = {BU{oc} | B € %).
It remains to show that (#*, #* U®,) is the desired {-design. Obviously,
|2t =v+1 and |#TUB,| =b+b'. Also oo, clearly, belongs to b blocks
and -any point in 2 belongs to r+7' = b blocks. Clearly, each block of
A+t U B, consists of k+ 1 points. Also any ¢ points of 2%, distinet from’ oo,
are contained in 4 blocks of #* and in A’ blocks of #,, and thus in 1+ 4’
blocks in all. Any .t points of #* including oo belong to no blocks of &,
and to 4_, blocks of #*. Hence the proof will be complete if we show
Aoy =N+ 4

We have A, = 4,+4,, for this is simply another way to write the
hypothesis b = r+7'. '

Now we assume A,_, = 4_,+A_, and show 4_, = 4,+4. To do
8o we use the following basic consequences of Theorem 1.1:

_ll—l(k’—t‘l‘l)
(1) k=
_ A (0—142)
@) oy = S
, hoa(k—142)
©) A=

Using (1), (2), and (3) together with the induction hypothesis, we have
A_y(b—t+1)+ A4 (k—1t+2)

htdy = v—1+1
_ (k—3+2)(h_y+ A1) —A_,
v—t+1
_ (=t 24— A, !
v—t+1 RS

The conditions of the theorem seem rather restrictive, but, in fact,
there are many applications of the theorem. All of the designs used as
hypotheses in applications 1-3 below can be found in [4]. To the author’s
knowledge, the block designs constructed here are all new.
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Applications to block designs

1. There are (15, 35, 14, 6, 5) and (15, 15, 7, 7, 3) block designs.
Thus, by taking multiples of the second design, there is a (15, 45, 21, 7, 9)
block design. Hence, by the theorem, there is a (16, 80, 35, 7, 14) block
design.

2. (16, 42, 14, b, 4) and (15, 36, 14, 6, 5) — that is (15, 70, 28, 6, 10) —
give us the block design (16, 112, 42, 6, 14).

3. (31, 93, 15, 5, 2) and (31, 31, 6, 6, 1) — that is (31, 401, 78, 6, 13) —
give the block design (32, 494, 93, 6, 15).

Applications to 3-designs

4. Since there are 3-designs with parameters (10, 30, 12, 4, 1) [6]
and (10, 36, 18, 5, 3) [7], there is a 3-design with parameters (11, 66, 30,
b, 4). This is a new construction of this design, but its existence is well
known since Witt [9] showed there is even an (11, 66, 30, 5, 1) 4-design.

5-7. Let
n, = (14,91, 26, 4,1), =, = (14,182, 65, 5, 5),

my = (14, 91,39, 6,5), =, = (14, 52, 26, 7, B).

3-designs with parameters =, [6] and 7, [6] exist. #, and x, are un-
known. Hence, if there is a design with parameters x,, then combining =,
and =, there is a (15, 273, 91, 5, 6) 3-design, and combining 7z, and 3 copies
of ny there is a (15, 465, 182, 6, 20) 3-design. Also, if there is a 3-design
with parameters twice =,, then — combining n, and twice =, — there is a
3-design with parameters (15, 195, 91, 7, 15).

8. The 3-design with parameters (16, 30, 15, 8, 3) exists [6], so there
is a (16,90, 45, 8, 9) 3-design. Thus, if the unknown 3-design (16, 80,
35, 7, b) exists, then the 3-design (17, 170, 80, 8, 14) exists.

9. The 3-design (17, 68, 20, 5, 1) exists [6]. So, if the unknown 3-design
(17,136, 48, 6, 4) exists, then the unknown 3-design (18, 204, 68, 6, b)
exists.

An application to 4-designs

10. The 4-design (23, 253, 77, 7, 1) exists [6]. Thus if (23, 506, 176,
8, 4) exists, we can construct a (24, 759, 253, 8, ) 4-design. We remark
that this latter 4-design is already known, since there is even a (24, 759,
263, 8, 1) b-design.

THEOREM 2.2. If there i a (v, b, r, k, A) t-design and a (k,b',7',1, A')
t-design and t <1< k, then there i8 a (v, bb’, rr', 1, AA’) t-design.
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Proof. Let (#, #) be a (v, b, 7, k, A) t-design. For each Be & let
Dy be a (k, b', 7', I, A’) t-design on the points of B. Let

9 = U 93.
Be®&

Since each block of # has been replaced by b’ blocks, we have bb’
blocks in all. Each of the r blocks through a point has been replaced by
a design with »’ blocks through each point. Hence each point has 7’ blocks
through it. Any ¢-points determine 4 blocks of # and each block is replaced
by a design in which the ¢ points determine 4’ blocks. Hence ¢ points deter-
mine A4’ blocks in all.

COROLLARY 1. If there is & (v, b, 7, k, ) t-design and t <1< k, then
. k k-1 k—t .
there i3 a (v, b(l)’ r( l—l)’ [ ;'(l—t)) t-design.
Proof. Apply Theorem 2.2 with the second design being the complete

k\ (k—1 k—t .
(k, (l)’ (l—l)’ l, (l—t)) {-design.

COROLLARY 2. If there i3 a (v, b, r, k, A) t-design and t < k—1, then
there i8 a (v, bk, r(k—1), k—1, A(k—1)) t-design.

Proof. In Corollary 1 take I = k—1.

3. Families of designs. We will denote families of designs by & numeral
and a letter. Thus (2a) is our first family of 2-designs, (3¢) the third family
of 3-designs, etc.

THEOREM 3.1. If 4m+3 and 8m+ 7 are prime powers, then there 18
a block design with parameters

(2a) (8m+7,32m*+452m +21, 8m*+10m+3,2m+1,2m*+m).

Proof. Apply Theorem 2.2 to designs belonging to the following
family shown by Bose [2] to exist whenever 4m + 3 is prime:

(B1) (4m+3,4m+3,2m+1,2m+1, m).

THEOREM 3.2. If 4m + 3 18 a prime power, then there i8 a block design
with parameters

(2b) (4m +3, 16m2 +20m + 6, 4m? 4 2m, m, m® —m).

Proof. Apply Theorem 2.2 to designs belonging to the family (B1)
and to the following family of Bose [2] which also exists when 4m -3
is prime:

(B2) 2m+1,4m+2,2m, m, m —1).
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Theorem 2.2 is also applicable to 3-designs.

THEOREM 3.3. If 4m +3 i8 a prime power, then a 3-design exists with
parameters

(3a) (4m 44, 64m? 4 80m + 24, 16m2+20m 46, m+1, mt—m).

Proof. Apply Theorem 2.2 to 3-designs belonging to the following
families of Sprott [7]:

(S1) (4m+4,8m+6,4m+3,2m+2,m),
(82) (2m+2,8m+4,4m+2,m+1, m—1).

Both designs exist whenever 4m 43 is prime.

Using Corollary 2, we will derive many new families of designs, but
first we list a few particular results of some interest in themselves. The
following 2-, 3- and 6-designs are new:

1. Since there is a (11, 11, 5, 5, 2) block design, there is a (11, 556, 20,
4, 6) block design.

2. Since there is a (12, 22, 11, 6, 2) 3-design, there is a (12, 132, 55,
5, 6) 3-design.

3. If there is a (12, 66, 33, 6, 2) 4-design, then there is a (12, 396,
165, 5, 4) 4-design.

4. Since there is a (24, 7569, 253, 8, 1) 5-design [9], there is a (24,
6072, 1771, 7, 3) 5-design.

THEOREM 3.4. If m i8 a prime power, then blook designs exist wilh
parameters

(2¢) (m?, m®+m3, m*—1,m—1, m—2),
(2d) (m*4+m+1, m*+2m?4-2m+1, m*+m, m, m —1).

Proof. Apply Corollary 2 to the families of affine planes and projec-
tive planes.

For example, by Theorem 3.4 with m = 4, we conclude that there
are block designs with parameters (16, 80, 15, 3, 2) and (21, 105, 20, 4, 3).
The latter design is new.

THEOREM 3.5. If 4m+3 i8 a prime power, then block designs exist
with parameters

(2e) (4m +3, 8m3+10m+ 3, 4m?+2m, 2m, 2m? —m),
(2f) (2m+2,4m24+6m+2, 2m2 4+ m, m, m? —m),
(2g) (2m+1, 4m*+2m, 2m* —2m, m —1, m* —3m +2),
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and 3-designs exist with parameters
(3b) (4m++4, 16m3+28m+12, 8mi+10m+3, 2m+1, 2m® —m),
(3e) 2m+2,8m2+12m+ 4, 4m®*+2m, m, m*—3m+2).

Proof. Apply Corollary 2 to the families (B1), (B3), (B2), (S1), and
(S2), respectively, where (B3) is the following family of Bose [2]:

(B3) 2m+2,4m+2,2m+1, m+1,m).

For example, taking m = 4, we conclude that there are designs be-
longing to (2e) and (3b) with the following parameters:

1. (19,171, 72, 8, 28) 2-design,

2. (20, 380,171, 9, 28) 3-design.

Since the parameters are rather involved, we give the following families
in the short form — mentioning only v, k¥ and A:

THEOREM 3.6. Assume n > 4. Then

1. there 18 a 3-design with parameiers

(3d) (2", 2" —1, (2" -3)(2""?* —1));
2. there is a 4-design with parameters
(4a) (2"+1, 2" —1, (2" —3)(2""* —1) (2" —4));
3. there i8 a b-design with parameters
(ba) (2*+2, 2771, (2" 1 —3) (2" ~1) (2" —4)).
Proof. Apply Corollary 2. to the following Alltop’s [1] families:
(A1) (2" 2771, 272 —1),
(A2) (2"+1,2*7%, (2! -3) (2" ~1)),
(A3) (2*+2,2"1+1, (2" —3)(2"*—1)).

We mention in passing that (A3) and (6a) are the only known families
of 5-designs.

THEOREM 3.7. Assume 4m -+ 3 i8 a prime power.

1. If 4m+4 = 2" for some n > B, then there is a 3-design with para-
meters
(3e) (8m+8,2m+2, 2m24+m).

2. If 2m+2 = 2™ for some n > b, then there is a 3-design wiih para-
meters
(3f) (4m +4, m, m®—3m2+42m).

3. If 2m+2 = 2" for some n > 5, then there i3 a 3-design with para-
meters
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(3g) (4m+4,m+1, m*—m).
Proof. By (Al) there is a 3-design with parameters
(2n+1, 2n on—1_1),
By (81) there is a 3-design with parameters
(4m+4,2m+42, m).

Since 2"*! = 8m+8 and 2"~ —1 = 2m+1, we conclude by compo-
gition Theorem 2.2 that there is an (8m+8,2m 42, 2m®*+m) 3-design.
Parts 2 and 3 of the theorem are proved in the same manner, composing
(A1) with (3¢) and (S2), respectively.
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