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IN ABELIAN LINEAR RECURRING SEQUENCES
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1. Many divisibility properties of special recurring sequences (such as the
Fibonacci, Lucas, Lehmer sequences and others) are known, but little is known
about divisibility properties in general linear recurring sequences.

One example of this is Perrin’s question [6] and problems connected with
it. The question is stated as follows:

Does there exist a composite index n with a, =0 (mod n) in the linear
recurring sequence {a,} of integers defined by a,.3; = a,4+, +a, and the initial
conditions a, =3, a, =0, a, =2?

Plainly, if p is a prime, then a, =0 (mod p), and therefore the negative
answer to this question yields a strong primality test. Unfortunately, Adams
and Shanks [1] and independently Jakubec and Nemoga [3] proved that
Perrin’s question can be answered affirmatively. This fact was surely known
sooner to many others but the only other reference we find is an unpublished
work [4], kindly suggested by Professor Schinzel.

Although Perrin’s question can be answered affirmatively, it is not clear
whether there are infinitely many composite numbers satisfying the mentioned
condition. From the point of view of primality testing it may be interesting to
answer the question of the existence of infinitely many composite numbers
satisfying simultaneously the conditions of the above type for a finite system of
linear recurring -sequences. We conjecture (P 1379) that the answer is
affirmative for an arbitrary finite system of simple linear recurring sequences.
This problem seems to be very difficult even for special sequences. However, we
show that the answer to this question is affirmative provided that every
sequence of the system is simple and Abelian and Conjecture H holds. Namely,
we prove the following:

Let {a,} be a linear recurring sequence of integers and g(x) be its
characteristic polynomial. Suppose that g(x) has only simple roots over Q and
the splitting field of the polynomial g(x) has an Abelian Galois group over Q.
Schinzel’s Conjecture H implies that there exist infinitely many composite
integers n of the form n=pq, where p and g are primes, such that
a,s = a;, (mod n) holds for every nonnegative integer s.
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The celebrated Schinzel’s Conjecture H says:

If f,(x), ..., fi(x) are irreducible polynomials with integral coefficients and
positive leading coefficient such that the product f,(x)...f,(x) has no constant
factor greater than 1, then there exist infinitely many positive integers x for which
f1(x), ..., fi(x) are primes.

We notice that Perrin’s sequence {a,} does not satisfy our assumptions,
hence we say nothing about it. However, Perrin’s question was the motivation
for our work.

2. A sequence {a,} of rational numbers will be called a linear recurring
sequence with characteristic polynomial

g(x) = b, x"—b,_x""1— ... —b,
if coefficients of g(x) are rational integers and a,’s fulfil the relation
bman+m = bm-— 10n+m-1+t ... +b0an

for every nonnegative integer n. (It is natural to require that b, # 0.) If the
polynomial g(x) has only simple roots, then the linear recurring sequence {a,}
will be called simple.

Let {a,} be a simple linear recurring sequence and ay, ..., a,, be roots of its
characteristic polynomial g(x). It is well known that the terms of the sequence
{a,} can be written in the form

(1) a,=c 01+ ... +C,0m

for some c,, ..., c,€Q(a;, ..., ,). The numbers c,, ..., c, are determined by
the system of linear equations

Y cpi=a,, where s=0,...,m—1.
j=1
Since g(x) has only simple roots, the determinant D of this system is
nonvanishing. Cramer’s rule gives
(2) c;=4d;D,

where d; belongs to the field Q(a,, ..., a,). Then for some integer e all numbers
ed; will be algebraic integers of the field Q(a,, ..., «,). For further reasons fix
one such e and set

(3) E =eD.

Now let g(x) be a monic integral polynomial with simple roots a,, ..., a,,.
The sequence a, = af + ... +ap, is a linear recurring sequence of integers. If p is
a prime, then we have

Aps =05+ ... +al = (i + ... +ap)f = af = a, (mod p)

for every nonnegative integer s.



SCHINZELS CONJECTURE 3

The property a,; = a, (mod n) can be seen as a generalization of that given
in Perrin’s question (see [1]).

DEFINITION 1. Let {a,} be a simple linear recurring sequence. An integer
n which satisfies the congruences a,; = a; (mod n) for every nonnegative integer
s is called a pseudoprime with respect to the sequence {a,}.

We restrict ourselves only to simple linear recurring sequences {a,}, because
in the other case there may exist only finitely many (even none) primes
satisfying the congruences a,, = a;(mod n) for every nonnegative integer s.

The notion of pseudoprime with respect to simple linear recurring
sequences is similar to that defined in [&].

At the present time one can find a lot of different definitions of pseudo-
primes (see, e.g., [7]). Questions concerning pseudoprimes are important in
some primality tests.

We remark that generally it is not true that every prime is a pseudoprime
with respect to a simple linear recurring sequence. However, this is true for the
special sequences of type a, = o} + ... +ap, (as is the case considered in [1] and
(3D

The following lemma says that every prime which splits completely in the
splitting field of the characteristic polynomial g(x) of a simple linear recurring
sequence {a,} is a pseudoprime with respect to {a,}.

LEMMA 1. Let {a,} be a simple linear recurring sequence and a,, ..., a,, be the
roots of its characteristic polynomial g(x). Then for E from (3) and every prime
p coprime to E, which splits completely in Q(a,, ..., a,,), we have a,; = a, (mod p).

Proof. Let k be the degree of the field Q(«,, ..., «,) over Q. Then

P=P...-Py

for some prime ideals p; of degree 1 in Q(«,, ..., a,).

From (1)+3) we infer that every c; belongs to the valuation ring of the ideal
p,forl=1,..., k because (p,, E) = 1. For every [ the residue field mod p, has
p elements, and therefore

Aps = C0F + ... +C007 = (cio) + ... +Cptm)?
=(a)f =a;, (modp) for every l=1,...,k.

Hence a,, = a; (mod p).

Remark 1. According to the Tschebotarev theorem the set of primes which
split completely in a given algebraic field of finite degree has positive Dirichlet
density.

Perrin’s question gives rise to the question of the existence of composite
pseudoprimes with respect to various simple linear recurring sequences.

DEFINITION 2. A simple linear recurring sequence {a,} is called Abelian if the



4 F. MARKO

Galois group of the splitting field of its characteristic polynomial g(x) over Q is
Abelian.

3. The aim of the paper is to prove the following theorem:

THEOREM. Let {ai}, i=1,...,r, be a finite system of linear recurring
sequences. If every {a}} is simple and Abelian, then Conjecture H implies the
existence of infinitely many common composite pseudoprimes with respect to
every sequence {ai}, i=1,...,r.

First we prove the following lemma:

LEMMA 2. Let g(x) be the characteristic polynomial of a simple linear
recurring sequence {a,}. Then for some positive integer M and every positive
integer s we have:

If a prime q =1 (mod Ms) splits completely in the splitting field L of the
polynomial g(x*°), then the period of the sequence {a,} mod q is a divisor of
(q—1)/s.

Proof. Decompose g(x) into the product of two polynomials g,(x) and
g,(x) such that the roots of g,(x) are just the roots of unity. It is clear that for
some positive integer N the polynomial g,(x) divides x¥ —1. We claim that
M = 2NE, where E is defined in (3), satisfies the requirement of the lemma.

In view of formula (1) it suffices to show that for every root a of g(x) and
every n one has

a"tM = g" (mod q).

For the roots of g,(x) this is obvious, so we may assume that « is a root of
g1(x)-

Write s = 2'v, where v is odd. Let D be the greatest divisor of v such that
there is some Be Q(x) such that o = B2 and let 2* be the greatest divisor of 2*
such that »

0 =y for some yeQ(®)
(for finding D and u we may use the decomposition law of ideals or the
Dirichlet theorem on units). Capelli’s theorem (see Theorem 21 of [9]) implies
that the polynomials x?—pB and x> —y are irreducible over Q(a) which
contains both Q(B) and Q(y).

Let h,(x) and h,(x) be minimal polynomials for B, resp. y, over Q. Then
another theorem of Capelli (see Theorem 20 of [9]) implies that

fix) =hy(x"®)  and  fy(x) = hy(x* )

are irreducible over Q.
For some root B, of f,(x) and y, of f,(x) we have
| BiP=p and 31 "=y,
and hence

Bi=p"=a and 9y} =y
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Since B, and y, belong to Land Lis normal, it is clear that L contains the
splitting fields of the polynomials f,(x) and f,(x). If g splits completely in L, then
q splits completely in both latter fields, which means according to [2] (Theorem
3, Chapter IV, Section 2) that f;(x) and f,(x) decompose into distinct linear
factors over the field Q, of g-adic numbers.

Therefore B is a (v/D)- th power and y is a 2' " “-th power of integral elements
from Q. (Here we use the fact that g is coprime to E.) Hence for some rational
integers b and ¢ we have

B=0b"? (modq) and 7y=c*" (modgq)
and, consequently,
a=p=b" (modg) and a?=c*"" (modg).

Since v and 2'*! are coprime, we obtain a? = d?* (mod q) for some rational
integer d.
If now e = (g—1)/s, then for all n we have

oq"te = gnt2el2) = d‘{"la =" (mod q)

and the truth of the lemma results from (1).

From the proof of Lemma 2 it is clear that in the notation of that lemma
the following is also true:

LeEMMA 3. If a prime q = 1 (mod Ms) splits completely in the splitting field
K of the polynomial g(x), then the period of the sequence {a,} is a divisor of q—1.

Our main tool for the utilization of Conjecture H is the following lemma:

LEMMA 4. Let k > 1 be an integer, 0 an algebraic integer such that L= Q(0) is
normal over Q, and g(x) the minimal polynomial of 0, of degree N, say. If F is
a positive integer divisible by k(2N ,)!, then there exists a polynomial f,(x) such
that the polynomials f(x) and f,(x) = (f,(x)—1)/k+1 satisfy the assumptions of
Conjecture H. Moreover, if f,(x) = q is a prime for some positive integer x, then
q splits in Land q =1 (mod kF).

Proof. Since the proof differs only a little from that of Lemma 4 in [10], we
state only the needed modifications. '

Let fy(x) = xN1 —1+k. Using a similar argument to that in the proof of
Lemma 4 in [10] we prove the existence of an arbitrarily large prime ! which
splits completely in L and such that

fx)=f,+Il= ﬁ (x—z;) (mod 12).
i=1

Letl=1,...1y be the splitting of lin L. By the Chinese remainder theorem
for L there exists an integer ye L satisfying the system of congruences

y =1 (mod kF),
= —z (modl}), i=1,...,N,.
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Let w be a rational integer different from all the numbers

oy—y
kFri(0—o0)’

where ¢ is an arbitrary nonunit element of the Galois group of L/Q.
Put '

I'=y+kFIP0w and f,(x) = N(kFx+T).

Since k divides N(I')—1, the polynomial f,(x) has rational integral coef-
ficients. The leading coefficient of f,(x)f,(x) is k?¥'~1F2N1 Because of

£(0) = N(I') = 1 (mod kF),
£(0) = (N(N)=1)/k+1 = 1 (mod F)

we have (f,(0)/,(0), kF) =1 since k divides F.
At this point we can use the argument in the proof of Lemma 4 of [10]. The
last part of the proof looks as follows:
Ni N,

fik)=1+k =[] kFx+o)—1+k= [] (kFx—z)—1+k

i=1 i=1
=f(kFx)—1+k = (kF)V'x¥ +1+1—-k)—1+k
= (kF)¥'xV1 +1 (mod 13).
Thereby
fix)—1+k = (kF)M'xN1 +1 (mod 1)

since [ splits completely in L.

The condition ¢ = 1 (mod kF) is satisfied because of the definition of the
polynomial f,(x).

Proof of the Theorem. Let g;(x) be the characteristic polynomial of the
simple linear recurring sequence {a.}. Using Lemma 2 we may choose an
integer k greater than 1 such that for some M the following holds: If a prime
q splits in the splitting field L of the product of polynomials g,(x**), then the
period of all sequences {ai} modulo q is a divisor of (g—1)/k.

Now we take an integer F such that fkM(2N,)! divides F, where N, is the
degree of L over Q and f'is the conductor of the splitting field K of the product
of polynomials g;(x). According to Lemma 4, Conjecture H implies that for the
chosen k there are infinitely many primes p, g such that

p=(q—1/k+1=1 (modkF)

and q splits completely in L. Since f divides F, we infer that p splits completely
in K.
Using Lemma 2 for q and L, resp. Lemma 3 for p and K, we have
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a;)qm = a;’(q-l)m+pm = alpm = a:q-l/k+ 1)m = a:n (mOd q)a
resp.
a;)qm = a:](p—l)m+qm = a;m = a:k(p—l)+ m = a:n (mOd P)

Hence

Blpgm = aly (mod pg).
This completes the proof of the Theorem.

At the end we remark that for a fixed algebraic number field L, the
Theorem above remains valid for linear recurring sequences of algebraic
numbers from L, whose characteristic polynomial has coefficients from L,
provided the splitting field K over L, of the product of g,(x) is Abelian over Q.

We conjecture that the analogous theorem holds also for nonabelian simple
linear recurring sequences but in this case the decomposition of ideals
(splitting) does not depend only on the congruence class of conductor f.
Therefore our method cannot be applied to this case.
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