COLLOQUIUM MATHEMATICUM

XLII DEDIE A LA MEMOIRE D’EDWARD MARCZEWSKI 1979

THE ORIGINS
OF THE CONOCEPT OF DIMENSION

BY

R. DUDA (WROCEAW)

The paper tells the story of how the problem of dimension came
about and what vicissitudes have marked a half a century pursue to grasp
the intuition of dimension and to shape it mathematically.

The origins of the concept of dimension can be traced back as far
as the “Elements” of Euclid (3656%-300% B. C.). Its book I starts with
the following detinitions:

1. A point i8 what has no part.

2. A Uine is what has length but not width.

3. The exiremities of a line are points. (...)

B. A surface i8 what has length and width only.

6. The extremities of a surface are limes.

And book XTI of “Elements” adds the following two:

1. A solid is what has lengih, width, and depth.

2. An extremity of a solid is a surface.

The definitions seem to set up sound intuitive basis to our under-
standing of dimension as measured by the number of parameters needed
for a description of points belonging to an object: point needs 0 parameters,
line is that which needs 1 parameter, surface — 2, solid — 3. Since geo-
metrical objects considered until the middle of XITX century easily fell
into one of the four classes: points, lines, surfaces, and solids, the intui-
tive attitude has been quite satisfactory for more than two thousand
years, there was no need for an extra precision and, quite understandably,
nobody bothered about it. It was only in the second half of XIX century,
together with the appearance of new ideas in algebra and differential
geometry, that the situation changed.

First came into being objects whose points are described by systems
of n real numbers, where n is any positive integer. They made their first
appearance in “The Linear Calculus of Extension” of 1844 and “The
Calculus of Extension” of 1862 (cf. [16]) by Hermann Giinther Grassmann
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(1809-1877), and in the qualifying lecture made by Georg Bernhardt
Riemann (1826-1866) for the title of Privatdozent in 1854. The latter
has been published posthumously in 1868 under the title “On the Hypo-
theses Which Lie at the Foundation of Geometry” [36] and the objects
are already called there n-dimensional manifolds, the name used to this
day. The dimensional qualification seemed quite natural from the intui-
tive point of view, but the trend towards precision (remember that it was
a period of instillation of rigor into analysis) and a prevailing attitude
have opened the question: what does the word “dimension” actually
mean and whether is it used here properly %

The first who consciously tackled that question was Georg Oantor
(1845-1918). In 1874 he has started his revolutionary work on the theory
of infinite sets and found out, to his astonishment, that the naive under-
standing of infinity, as of the one and only one, cannot be maintained any
longer: the set of algebraic numbers is countable whereas the set of reals
is not. The discovery turned to be prolific (e.g., it yields immediately
that there are uncountably, hence infinitely many transcendental numbers)
and the idea suggested itself that the infinite cardinal numbers can be
ordered in the way which corresponds to the passage from 1-dimensional
to more-dimensional objects. On the way of Cantor’s thinking there is
an invaluable testimony: a correspondence between him and Richard
Dedekind (1831-1916) which covered all his active life and parts of which
have been published in his collected works [13] and separately in 1937
by E. Noether and J. Cavaillés [1]. In 1874 Cantor wrote to Dedekind
as follows:

“Concerning questions which make me recently busy, also the fol-
lowing seems to be worth of presenting out of this way of thinking: Can
a surface (e.g., a square including boundary) cover a line (e.g., a straight-
-line segment including ends) in a one-valued manner so that each point
of the surface corresponds to one point of the line and, conversely, to
each point of the line belongs one point of the surface?” ([1], p. 20).

Cantor adds that the answer must afford serious difficulties, although
“no” is 8o suggestive that one may consider the proof almost superfluous.

And three years later he proved that the answer is “yes” by showing
that there exists a one-to-one correspondence between points of the unit
segment and points of the unit n-dimensional cube, where n is any positive
integer or even countable infinite (see [1], p. 29-34; a complete proof
of a more general theorem is given in [11] = [14], III, 2). He was so
startled (“je le vois, mais je ne le crois pas”) that it raised his doubts
about the validity of the whole question of dimension. He wrote to De-
dekind ([1], p. 34):

...“Now it seems to me that all philosophical or mathematical reason-
ings, which make use of that faulty assumption, are invalid. And even
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more, the distinction between objects of different dimensions must be
looked for in quite different areas than that of the characteristic number
of independent coordinates.”

In an answer, Dedekind tried to defend the previous intuition of
dimension for manifolds ([1], p. 37-38):

..“Against it I raise (despite your theorem or rather as a result of
cogitations initiated by your theorem) my conviction or my belief (...)
that the dimensional number of a continuous manifold is, as before, its
first and the most important invariant, and so I must stand up for all
the hitherto writers in that matter. But I agree willingly with you that
the constancy of the dimensional number requires a proof and as long
as such a proof is not provided one should doubt it. I do not, however,
doubt in that constant, although your theorem apparently destroys it.
All writers make namely the tacit and quite natural assumption that
for any new description of points of a continuous manifold by new coordi-
nates the latter should also (in general) be continuous functions of the
old ones (...). Thus for the time being I believe in the following theorem:
«Let there be a mutually one-valued and complete correspondence be-
tween points of one continuous manifold A of a dimensions on one side
and of another continuous manifold B of b dimensions on the other. Then
the correspondence, if a and b are not equal, is necessarily everywhere
discontinuous.»”...

Cantor agreed and in the next few years tried to prove the Dedekind’s
conjecture. For some time he believed to be in a possession of a proof
that there does not exist a continuous and even many-to-one mapping
of one manifold onto another (of a different dimension), but there were
some gaps and so eventually, in 1879, he gave it up ([1], p. 39-49).
Luckily for him, for in 1890 Peano will show that such mappings do exist.
Then he turned to attempts made in the meantime by some other people,
rightly criticized them for incorrectness and presented his own proof,
in turn rightly criticized by some of them somewhat later (see [12] = [14],
IIT, 3; cf. Anmerkung in [14], p. 138). After 1879 Cantor apparently
lost his interest and ceased to be engaged in the work around the question
of dimension (but later he will yet provide a definition of a plane curve,
i.e. of a 1-dimensional object lying in the plane).

Thus the question remained open, but the matter has been to some
extent clarified: if dimension was to be really “the first and most impor-
tant” geometrical invariant, it had to be preserved by one-to-one and
continuous mappings of one manifold onto another. And since the simplest
manifold is a euclidean space itself, the problem can be put in the following
form: does there exist, for two euclidean spaces of different dimensions,
a one-to-one and continuous mapping from one space onto the other?
The expected answer was “no”, but the next thirty years have seen only
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incorrect or partial solutions, e.g. Eugen Netto (1846-1919) [32] and
Jacob Liiroth (1844-1910) [23].

Manifolds were not the only geometrical objects investigated in that
time. Another large class was that of lines (curves), the abundance of
which has appeared in analytic and differential geometry. What a line
is, was understood intuitively, but the time has come to define it precisely.
The first who attempted such a definition was Camille Jordan (1838-1922).
In his famous “Cours d’Analyse” [18] he has bound the concept of & line
with that of continuity: '

...“A line, being defined as the place of successive positions of a mov-
ing point, will be represented, in the case of a plane move, by a system
of two equations

z=f@), y=4g(@),

where f and g are functions of an independent variable ¢ which can be
viewed upon as a time. If those functions are continuous, the curve will
be called continuous.” (see [18], I, p. 90).

Thus a line has been defined as a continuous image of an interval
and, in praise of Jordan’s contribution, each such an image has been later
called a Jordan line. One is tempted to think that the intuition has been
seized rightly, since each figure classified so far as a line was a Jordan
line and nobody doubted that also conversely, each Jordan line was
a figure that we want to be called a line.

However, in 1890 Giuseppe Peano (1858-1932) has constructed
a continuous mapping on the unit interval, the image of which was
the full unit square [38]. In this way and in a sharp contrast to an intui-
tion the full square has turned up to be a Jordan line.

This was a great surprise and the discovery has become the subject
of vivid investigations carried by men like Ernesto Cesaro (1859-1906),
Hans Hahn (1879-1924), David Hilbert (1862-1943), Eliakim Hastings
Moore (1862-1932), Arthur M. Schoenflies (1853-1928), Waclaw Sier-
piniski (1882-1969), and several others (see survey article [22]). They
have thrown much light on the matter but the very fact remained and
the confusion brought about by it can be well seen in a remark of Felix
Klein (1849-1925) who once said that nothing is more obscure than the
concept of a curve [19].

Nearly thirty years later Hans Hahn and Stefan Mazurkiewicz
(1888-1945) have characterized, in general topological terms, the class
of compact metric Jordan lines, i.e. of those compaet metric spaces
which are continuous images of a segment. They proved (cf. [17], [25])
that it coincides with the class of locally connected continua or, as many
call it, Peano continua. This is & vast class of continua and contains many
objects which are rather far from what we want to be called a
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line, e.g. cubes of all dimensions, including infinite-dimensional Hilbert
cube.

On the other hand, there are obvious “lines” which are not locally
connected, e.g. graph of the function y =sinl/z, 0 < 2 <1, together
with the segment [ —1, 1] of y-axis.

Thus the Jordan’s attempt failed.

Discovery of Peano was also a blow to the hope of relating the gen-
eral concept of dimension to the number of continuous parameters needed
for a description. Moreover, if one could combine Cantor’s construction
of a one-to-one mapping from a segment onto a square with that of Peano,
thus asserting a one-to-onc and continuous (consequently, homeomor-
phic) correspondence between the points of the segment and of the square
— the dimension would be of no geometric value whatsoever. Whether
such a combination be possible, could be decided by a solution of the
basic problem: are two euclidean spaces of distinet dimensions homeo-
morphic to each other?

But now the expected negative solution of that problem could not
suffice. In the series of six papers “Uber unendliche lineare Punktmannig-
faltigkeiten” (Mathematische Annalen, 1879-1884 = [14), III, 4) Georg
Cantor defined open, closed, dense, perfect, connected etc. subsets of
euclidean spaces and Italian mathematicians Giulio Ascoli (1843-1896),
Vita Volterra (1860-1940), Cesare Arzeld (1847-1912) transferred these
notions to sets the elements of which are functions. This flux of ideas was
the beginning of general topology with its multitude of general topological
spaces. The range of considered objects raised tremendously and revealed
ones of complexity never before dreamt of. And in spite of unsuccessful
attempts at the definition that has been hitherto made, the old beliet
that the dimension is “the first and most important” invariant of a space
was 80 strong that the whole question has been transplanted to the much
wider area of topology. But we should also notice the difference: the
intuitive basis of dimension, as expressed by Euclid and then commonly
accepted, has been now broken to pieces by the discovery of Peano and
his followers, the whole concept seemed dubious (remember that the
problem of dimension of euclidean spaces was still open in its entirety),
and there was no idea what it should be with respect to general topological
spaces and how to define it. It is then no wonder that there came a period
fo multidirectional searches, unsuccessful attempts and wanderings.
Rather wonderful was the fact that the work went on incessantly without
waiting for a solution of the basic problem for euclidean spaces (soon
solved anyway) and that within the life of one generation the whole work
of analysis and construction has been done.

But first came unsuccessful attempts. Such was Jordan’s and now
we mention another two.
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Cantor defined a line in the plane as a continuum with the following
property [13]: for each point of the continnum and any neighbourhood
of it (in the plane) there is a point in that neighbourhood which does not
belong to the continuum. In other words, a line in the Cantor sense is
any nowhere dense subcontinuum of the plane. The definition excludes
pathologies of Peano type and in the considered range of plane subcontinua
agrees well with the intuition accepting those and only those continua
a8 lines which should be lines. Nevertheless, it is unacceptable: the defi-
nition is essentially restricted to subcontinua of the plane and it is “exter-
nal” by referring to the complement of the figure.

Maurice Fréchet (1878-1956) has patterned his definition of a dimen-
sional type [15] after the concept of cardinality (later P. Mahlo has
coined the term homoie for it). If two figures 4 and B are such that each
is homeomorphic with the subset of the other, we say that both have
the same dimensional type and write dA = dB, e.g. interval and the
whole line. If A is homeomorphic with the subset of B, but B is not homeo-
morphic with any subset of 4, then the dimensional type of A is lesser
than that of B and we write d4 < dB. And if neither dA = dBnordA < dB
nor dA > dB, the dimensional types of A and B are incomparable, e.g.
a triod and a circle. There are many problems on dimensional types and,
although they may appear interesting in themselves, from the viewpoint of
dimension it is also a drive into corner: there are too many dimensional
types and the interrelations are too ramified. No wonder then that the
concept was soon abandoned and well forgotten.

The last years before the outbreak of World War I have seen an
abundance of intriguely interesting papers which came close to the concept
of dimension and proved its validity but fell just short of reaching it.
Three names deserve particular mention here: Poincaré, Lebesgue, and
Brouwer.

Henri Poincaré (1854-1912) was the man who thought the whole
problem over and came to fine conclusions. However, he had no time to
put them in a clear mathematical form and all we know about his way
of thinking lies hidden in two articles: one published 1912 in a philosoph-
ical journal [34] and another found after his death and published [35]
only in 1920. In the first he writes:

...“0Of all the theorems of Analysis Situs (the former name of to-
pology — R. D.), the most important is that which we express by saying
that space has three dimensions. It is this proposition that we are about
to consider, and we shall put the question in these terms: when we say
that space has three dimensions, what do we meant”...

As the following excerpts will show, he tried to find an answer by
returning to the roots but considering them from a distinet point of view.
Looking back at Euclid, one can see that the stress is now put not on
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the number of parameters but on the shape of extremities. According
to Poincaré it suffices to know what cuts are necessary to divide geo-
metrical objects (for some reason he calls them continua) into pieces,
because then one can proceed inductively and evaluate dimension of
those objects by dimensions of their cuts. Poincaré writes:

+.“If to divide a continuum C, cuts which form one or several con-
tinua of one dimension suffice, we shall say that C is a continuum of two
dimensions; if cuts which form one or several continua of at most two
dimensions suffice, we shall say that C is a continuum of three dimensions;
and so on.

To justify this definition it is necessary to see whether it is in this
way that the geometers introduce the notion of three dimensions at the
beginning of their work. Now, what we see? Usually they begin by defin-
ing surfaces as the boundaries of solids or pieces of space, lines as the
boundaries of surfaces, points as the boundaries of lines, and they state
that the same procedure cannot be carried further.

This is just the idea given above: to divide space, cuts that are called
surfaces are mecessary; to divide surfaces, cuts that are called lines are
necessary; to divide lines, cuts that are called points are necessary; we
can go no further and a point cannot be divided, a point not being a con-
tinuum. Then lines, which can be divided by cuts which are not continua,
will be continua of one dimension; surfaces, which can be divided by
continuous cuts of one dimension, will be continua of two dimensions;
and finally space, which can be divided by continuous cuts of two dimen-
sions, will be a continuum of three dimensions.”

Stressing the inductive nature of the geometric meaning of dimension
and the possibility of disconnecting a space by subsets of lower dimension,
Poincaré penetrated the problem deeply. He repeats:

...“I want to base the establishing of the number of dimensions upon
the concept of a cut. (...) A continuum has » dimensions if it can be divided
into pieces with the help of one or more cuts which are continua of n —1
dimensions.”

Another approach, only later estimated at its proper value, has
been proposed by Henri Lebesgue (1875-1941). In a paper of 1911 he
writes [20]:

...“If each point of a region D of n dimensions belongs to at least
one of finitely many closed sets E,, ..., E, and if these sets are sufficiently
small, then at least n+1 of them have common points.”

By a region Lebesgue means here an open and bounded (i.e., of
a finite diameter) subset of an n-dimensional euclidean space. The pro-
position stems out from the observation of the pattern on the surface of
a wall or of honey comb: a square can be covered by arbitrarily small
“bricks” in such a way that no point of it belongs to more than three of
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them, and if “bricks” are sufficiently small, then some three must have
a point in common. In a similar way, a cube in n-dimensional euclidean
space can be decomposed into arbitrarily small “bricks” such that not
more than n-+1 meet. Lebesgue’s proposition is equivalent to say that
this number cannot be reduced further, i.e. for any decomposition into
a finite number of sufficiently small “bricks” there must be a point common
to at least n+1 of them.

Trivial as it may seem, the real meaning of the observation consists
in the fact that it discloses a simple topological property discerning
euclidean spaces of distinet dimensions. In particular, it implies thaf
there does not exist a homeomorphism between euclidean spaces of
distinct dimensions.

The observation has been fully proved later by Brouwer [4] and in
1921 by Lebesgue himself [21]. And when the topological terminology
evolved sufficiently, it has become the definition of a so-called covering
dimension: covering dimension of a topological space X is the least in-
teger n, denoted dim X, such that for each finite open cover of X there
exists a finite open refinement of rank n41 (i.e., the intersection of any
n +2 members of the refinement is empty). Defined in topological terms,
the covering dimension is a topological invariant and the observation
of Lebesgue (now a theorem) states that it agrees well with the intuition
yielding proper values for euclidean spaces.

Relying upon some ideas of Lebesgue [20] and upon his own analysis
of the phenomenon discovered by Peano [33], Stefan Mazurkiewicz has
come to the following concept [24]: dimension of a compact metric space
X is the least positive integer » with the property that there exists a map-
ping f from a closed subset of the Cantor set onto X such that each coun-
ter-image f~!(x), where # € X, consists of at most n-+1 points. Writing
during the war, in the language of a nation which has not existed in polit-
ical maps of that time, and in a journal of a limited propagation — the
concept has been doomed to oblivion from the very beginning. Later it
turned to be equivalent with the concept of Menger and Urysohn, but
never exercised any influence.

In the same year 1911, when Lebesgue made his observation, Leitzen
Egbert Jan Brouwer (1882-1965) has started his series of papers concerning
dimension. In [2] he proved that euclidean spaces of distinet dimensions
are not homeomorphic to each other, thus being the first to confirm the
common conviction (although stated simultaneously, Lebesgue’s observa-
tion has been proved much later). However, he has not made use of any
clearly defined dimensional invariant (& closer examination reveals the
invariant: for a sufficiently small ¢ > 0 there does not exist a continuous
mapping from the n-dimensional cube into (n —1)-dimensional polyhedron
which moves each point for at most ¢), and so the paper did not imply
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the definition of dimension. But it proved that the dimension of mani-
folds, which by definition are locally euclidean, is well defined. Thus in
the range of manifolds the intuition as exposed by Euclid remains valid.
In [3] Brouwer generalized the previous result on the invariance of di-
mension of euclidean spaces by proving the well-known theorem on the
invariance of domain: in an n-dimensional manifold a one-to-one and
continuous image of an open subset remains open. Then he turned to
the ideas of Poincaré. Of particular interest is here the paper [4]. Brouwer
starts with a critic of Poincaré’s view, emphasizing its susceptibility of
various interpretations, e.g. the meaning of a continuum (not defined
there), and ambigunity of words “one or more” (actually how many?).
Then he writes:

...“All these faults vanish if we change the recurrent definition of
Poincaré as follows:

Let X be any normal set, and A, B, C three subsets of X which are
closed in X and have no common points. Sets 4 and B are called sepa-
rated in X by C, if each connected and closed subset of X, which has points
in common both with 4 and B, contains at least one point of C. The
expression X has dimensional degree m, where n is any rational integer,
means now that for each choice of A and B there is a set 0, separating
A and B, which has dimensional degree at most n —1. Further, the ex-
pression X has dimensional degree 0 or dimensional degree infinity means
that X does not contain any subset which is a continuum or that one
cannot attribute to X either 0 or any integer as its degree of dimension.”

The crucial point in the conception of Poincaré is the notion of a cut.
Once we know what a cut is, it suffices to establish the family of sets of
dimension 0 and proceed inductively: sets of dimension 1 are those which
have sufficiently many cuts of dimension 0, sets of dimension 2 are those
which have sufficiently many cuts of dimensions 0 and 1, etec. And that
is what Brouwer did. He defined cuts as above and established sets of
dimension (dimensional degree) 0 as those which (in the modern termi-
nology) do not contain any non-degenerate connected subset. The value
of his definition has been shown immediately by the theorem that each
n-dimensional manifold has dimensional degree equal exactly to .

One year after the appearance of the last Brouwer’s paper related
to the problem of dimension, World War I had broken up and most of
the hitherto achievements were to be forgotten. After war the theory
will revive, but on a much simpler basis.

Of the growing necessity of the concept of dimension may testify
the paper of Sierpinski [37] in which he considered the following property
of a subset X of a euclidean space: for each point p of X and each ¢ > 0
the set X is the union of two disjoint and closed (in X) subsets 4 and
B such that p € A and A lies within a ball of diameter &. With the appear-
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ance of dimension theory the property will become equivalent to say
that X is 0-dimensional.

The modern concept of dimension has been proposed by Karl Menger
and P.S. Urysohn (1898-1924).

Menger claims that he had sent first a note containing his definition
to the journal Monatshefte fiir Mathematik und Physik as early as autumn
1921 (cf. [28], p. 83-86), but the definition appeared in print only in
1923 (see [27]). The definition runs as follows:

..“A non-empty set M in the space R, (i.e., m-dimensional euclidean
space — R. D.) is called n-dimensional if 1. for each point p and each
open neighbourhood U,(p) there exists an open neighbourhood U,(p)
< U,(p) the boundary of which has at most (n —1)-dimensional common
part with M, and if 2. M contains at least one point ¢ for which there
exists an open neighbourhood U such that M meets the boundary of
any open neighbourhood U,(¢) = U in a set which contains (n —1)-dimen-
sional part. (—1)-dimensional is empty set.”

And in a shorter form (cf. [28], p. 80):

...*A space is called n-dimensional, if » is the least number such that
each point of the space is contained in arbitrarily small neighbourhoods
with at most (n —1)-dimensional boundaries.”

The definition follows the line proposed by Poincaré and is much
simpler than the dimensional degree of Brouwer. Laying closer comparison
of the two for a while aside, let us follow a mental experiment of Menger
([28], p. 78 ff.) which is perhaps the best way to make clear the underlying
intuition of Menger’s concept: ‘

... A simple experiment with an individual object, for the fulfillment
of which we may think of a solid as made of a wood, of a surface as made
of a thin metal sheet, and of a curve as made of a fine wire, gives charac-
teristic result for its dimension. The experiment consists in extracting
a point together with the points of a vicinity from the object. If we want
to extract a point together with the vicinity from a wooden solid, we
must pull out a saw and cut across some surfaces. If we want to extract
a point together with the vicinity from a metal surface, we use scissors
and cut the surface along some curves. If we want to extract from a curve
a point together with the all points of its vicinity, then pincers, no matter
how the curve is ramified or tangled, suffice to cut the curve in discrete
points through. And finally, when we consider a sand form and from it
we also want to extract a point together with all points in its vicinity,
then we see that no tool is necessary, because in discrete objects nothing
is to separate.

Now there are also objects which bear themselves with respect to
their dimension differently in different points. Consider a wooden solid
to which a metal surface is added and, moreover, in some points a wire.
We call the object 3-dimensional in its entirety, but at the same time
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we say that in some points it behaves like a surface and in some points
like a curve. (...)

To make these results precise for general spaces, let us notice that the
vicinity employed in the experiment corresponds to a neighbourhood of
that point. And that what in the experiment must be passed to extract
such a neighbourhood, what connects the neighbourhood with the rest
of the space — corresponds obviously to the boundary of that neigh-
bourhood. ...”

As we have noticed, two men have rendered services to the cause of
dimension. The second was Paul 8. Urysohn who found in 1924 his untimely
death in the Atlantic when the incoming storm has brought the swim-
mer upon rocks near Le Batz (France). Three years earlier his professor
D. F. Yegorov (1869-1931) has put to him the problem to find a definition
of a line such that in the plane were equivalent to that of Cantor but
differed essentially in the manner of formulation: new definition had to
be “internal”, i.e. without appealing to external space.

The friend of P. S. Urysohn, P. S. Aleksandrov, recalls ([40], Intro-
duction):

“... Paul begun to think immediately. (...) And very soon the object
of his considerations became a general concept of dimension. Making
incessant trials, he kept working all the summer 1921. Constructing
examples to show why this or that effort is invalid, he has been passing
from one possibility to another. Two months of unusually deep medita-
tions elapsed, but finally, some morning at the end of August, Paul roused
from sleep with the ready and now known to everybody definition of
an inductive dimension. This happened in the village Burkovo, near
BolSevo, on the coast of Klasma river, where a group of young mathe-
maticians from Moscow spent their holidays. And that very morning,
while bathing in Klasma, he told me his definition and in a talk which
lasted several hours afterwards he sketched the plan of dimension theory
with a long series of theorems which were then only hypotheses and
nobody knew how to treat them but which were in the next few months
proved one by one. The sketched plan has been completely fulfilled during
winter 1921/22 and in spring of 1922 the theory has been done.”

In September 1922 there has appeared a small note [38] (complete
exposure of the theory has been published posthumously in Fundamenta
Mathematicae [39]) containing the following definition:

“Let C be a set, and p its given point. We say that a subset B of C
e-separates point p if the difference C—B can be decomposed into
union of two sets 4 and D such that

1. sets A and D are separated, i.e. they do not meet and neither
contains any point of convergence of the other,

2. set 4 contains the point p,

3. set A is contained in a ball of radius e.
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Sets and points of dimension » will be defined inductively. For
that purpose assume that sets and points of dimension < » have been
already defined. .

g.: a point p is not of a dimension < n with respect to C, but for each
¢ it®an be e-separated by a set of dimension < n, then we say that p is
of dimension n with respect to C. And if each point of O is of dimension < n
with respect to C and there are points, with respect to which O is of dimen-
sion n, then C itself is called a set of dimension n.”

The definition of Urysohn is wvalid, literally speaking, for metric
spaces only, but if one replaces metric balls of arbitrarily small radius
around p by (in modern terminology) arbitrarily small neighbourhoods
of p — one gets a definition which has a meaning for general topological
spaces. And moreover, since the set B from the Urysohn’s definition either
is a boundary of a neighbourhood of » or contains such a boundary and,
conversely, since each boundary of a neighbourhood of p e-separates
point for some ¢ — both definitions, of Menger and of Urysohn alike,
express the same intuition. And since both start at the same level —1,
which is the dimension of empty and only empty set, both are equivalent.

We have already noted that the definition of Menger appeared in
print later than that of Urysohn, but Menger claims to have it earlier.
This has stirred up a harsh controversy on priority (cf. an introduction
of P.S. Aleksandrov to collected papers of P.S. Urysohn [40]), but it
is now rather commonly accepted that both definitions have been obtained
independently.

Another bitter controversy concerning priority has aroused between
Brouwer [6]-[8] and Menger [29]-[31]; cf. commentaries of H. Freuden-
thal to [10].

Brouwer claimed that his dimensional degree had to be equivalent
to Menger’s dimension but a misprint spoiled it and, moreover, that even
keeping it one can construct another but equally good theory of dimension.
Neither argument seems to be convincing. Brouwer used his definition
as it was to prove such basic results as that concerning dimension of
euclidean spaces. And making a stronger appeal in his definition of a cut
to connectedness which is quite difficult to deal with, he made his defi-
nition of dimensional degree much more complicated and apparently
much more distant from the intuition than Menger’s definition of di-
mension. The difference between the two definitions starts already
at the level 0: a set has Brouwer’s dimensional degree 0 if it does not
contain any connected subset, and a set has dimension 0 in the sense
of Menger-Urysohn if -for each point of it there exist arbitrarily small
neighbourhoods with empty boundary. Thus each set of dimension 0 has
dimensional degree 0, but it turned out soon that not conversely: there
exist sets of each positive dimension, including infinity, which do not
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contain any connected subset consisting of more than one point and thus
which have dimensional degree 0 [26]. Thus the class of 0-dimensional
spaces is contained in and is not equal to the class of spaces with dimen-
sional degree 0, and this leads (an easy inductive proof) to the inequality

dimensional degree of X < dimension of X

for each topological space X, where on the left-hand side may appear
0 and (for the same X) on the right-hand side even infinity.

It follows that the two definitions, that of Menger-Urysohn and that
of Brouwer, lead to distinet stratifications of general topological spaces
with respect to their dimension or dimensional degree and that stratifi-
cation with respect to dimension is more subtle.

On the other hand, the two definitions are based upon the same
geometric intuition, both are inductive and, in fact, for a vast class of
spaces, including locally connected metric continua, both are equivalent.
As Brouwer himself has admitted [7], if one replaces the Brouwer defi-
nition of a cut by that of Urysohn and starts induction at the level not
0 but —1 (dimension of empty set), the two definitions become fully
equivalent. Thus the two definitions are in a sense close to each other
but not identical. And since the theory based upon the definition of
Menger-Urysohn has gained imminent success, while the possible theory
based upon the definition of Brouwer offered serious difficulties due to
the more complicated concept of a cut — nobody, including Brouwer
himself, undertook the building of the latter. The hard, good work on
dimensional degree has sunk into oblivion (but the work which aroused
out of it, e.g. the important theorem on invariance of domain, has main-
tained its great wvalue).

The appearance of the definition of Menger-Urysohn closes the
period of about half a century search after a good mathematical expres-
sion of a concept of dimension and opens the period of evolving dimension
theory based upon it, which lasts to the present days. In the period of
search two trends could be observed. The first, one may call it geometric,
consisted in the analysis of a relation, suggested by the tradition and the
nature of the then considered objects (lines, surfaces, euclidean spaces,
manifolds), between the number of parameters needed for the description
of an object and the dimension of the object, its “first and most impor-
tant” geometric invariant. The relation has been soon clarified in the form
of the basic problem “Can two euclidean spaces of distinet dimensions be
homeomorphic to each other?” and the negative solution of that problem
some thirty years later has proved the geometric validity of the notion
of dimension, at least for manifolds. The milestones of the geometric
trend are the names Cantor, Dedekind, Peano and Brouwer. The unex-
pected discovery of Peano has shown the limits of applicability of that
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relation and it was the beginning of the second trend which most rightly
can be called topological. It was a search after a new, deeper, intuitive
bagis of dimension and its mathematical shaping, which had to be appliable
to general topological spaces and be compatible with the already well
established dimension of euclidean spaces. The milestones here are works
of Peano, Poincaré, Brouwer, Menger and Urysohn. Somewhat aside lies
the original and important by its consequences observation made by
Lebesgue.

The story told above shows clearly that a construction of a working
mathematical concept is by no means a trivial task. In the case of dimen-
sion it took about half a century of hard work of many of the brightest
men of the time. Much of that work has been made in vain, but in a sense
each contributed to the final solution. Such was the price for a progress.
And in the early twenties there are at hand two good definitions of di-
mension: inductive of Menger-Urysohn and covering of Lebesgue, and
the problem of dimension is well installed within that new branch of
mathematics which justifies its appearance and in turn is justified by its
validity — topology. Gaining momentum, the problem of dimension will
in a few years expand to the still growing dimension theory.

Added in proof. After the article had been written, I learned of early
Bernard Bolzano’s (1741-1848) analysis of the problem of dimension
(cf. Dale M. Johnson, Prelude to dimension theory: the geometrical investi-
gations of Bernard Bolzano, Archive for the History of Exact Sciences
17 (1977), p. 262-295). Bolzano’s interest, spanning virtually his entire
lifetime, has led him to ingenious definitions of a line, surface and solid
in 1817 and to new ones in 1830’s and 40’s, based upon some set-theoretical
and topological methods of his own. However, all this was far ahead of his
time and he had no followers to take the task up where he had left it.
His contribution has thus remained totally unknown to the people who
some thirty years after his death raised the problem anew as well as to
those who eventually solved it.
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