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METRIC BETWEENNESS IN NORMED LINEAR SPACES

BY

F. AL. TORANZOS (BUENOS AIRES)

1. Introduction. Let (E;| |) be a real normed linear space and 6
its origin. Denote U(w, a) = {t: [v—1| < a}; S(x, a) = {t: [x—1t| = a}; in
particular, U = U(6,1) and § = 8(0, 1). The open linear segment (resp.,
closed linear segment) with extremes x and y is denoted by (z; y) (resp.,
[z; y]). If , ¥y and z are points of E, we say that z is between x and y iff
|e—2|+ |z—y| = |[r—y|. B(w,y) is the set of points between z and y.
From the properties of the norm it follows that [x; y] < B(x, y) for every
pair {r;y}. The pair {r;y} is tense (notation: wxry) iff [z;y] = B(x, y),
that is, if metric and algebraic betweenness coincide for this pair.

The aim of this note is to describe in terms of the geometry of U,
for any « in E, the set of all y such that xry (see Theorem, 2.8). An easy
consequence of such description is a characterization of tense spaces,
i.e. normed linear spaces such that any pair of points is tense (see below,
Theorem, 3.2) This type of spaces is frequently used in papers on Distance
Geometry (see, for instance, [1] and [6]).

2. The relation t. If A c E,tcE, AcR, write A4 = [Ax:xeA] and
A+t = {x+t: wed}.
LemMA 2.1. If x,y and z are points of E and AeR, then
(i) B(iw, dy) = AB(x,y).
(ii) B(z+2,y+2) = B(x, y)+=.
Proof. If teB(x, v), then
(i) |Av— At + |4t —Az] = |A|(lo—¢|+[t—2]) = |A] [v—2| = [w— 22].
Hence AteB(Ax, Ay). The converse inclusion follows in the same way.
(i)  [w+2)—(+2)|+ [(t+2)— (y+2)|
= |lp—t+t—y| = ls—y| = (—2)+ (y—=2)|.
Hence t+2¢B(x+2, y+2). The converse inclusion follows clearly.
PROPOSITION 2.2. The relation t satisfies the properties
(i) VaxeE, vro.
(ii) zry tmplies yrz.
(iii) VieR, xry tmplies (Ax)T(Ay).
(iv) VzeE, vty implies (v+2)7(y+ 2).
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Proof. (i) and (ii) are immediate from the definition of z.
(iii) From 2.1 (i) it follows that

B(iz, dy) = AB(z,y) = Alz; y| = |Az; Ay|.
(iv) From 2.1 (ii) it follows that
B(»+z,y+2) = B(w,y)+z = |z;y|+2 = |[z+2;y+2|.

Write T'(x) = {y: vy} and, in particular, T, = T'(9).
LEMMA 2.3. For any velE, T(x) = Ty+ .

Proof. Inmediate from 2.2 (iv).

LEMMA 2.4. T(x) is a union of lines through zx.

Proof. In view of 2.3 it is enough to show that T, is a union of lines
through 6. But if yeT, and A¢R, then it follows from 2.2 (iii) that

yeT(A0) = T,.

LEMMA 2.5. If teB(x, y), then [t;x] =« B(z, y).

Proof. This is a particular case of the transitivity of metric between-
ness. For the general statement and proof, see [2], p. 33, theorem 12.1. (3).

LEMMA 2.6. The following statements are aquivalent:

(i) wvy,

(ii) |o—2| = |e—y| = (1/2)|x—y| implies z = (1/2)(x+y).

Proof. (i) — (ii) Trivial.

(ii) - (i). Let a = |[r—vy| and teB(x,y). We can assume without
loss of generality that [t—t| = >a/2 >a—f = |y—1t|. Setz = (a/28)t+
+ (28— a/2B8)x. Hence |x—z| = a/2, and since ze[x;t], it follows from
2.5 that |y—z| = «a/2. By (i), z = (1/2)(x+vy) and t = (a—fB/a)z+
+(B/a)ye[z; y].

If F is a closed convex set, an extreme point of F is a point e F such
that there is no open segment (¥; z) = F containing x. The set of all extreme
points of F is denoted by ex F. Clearly, ex F < bdry F.

ProrosiTION 2.7. TynS =ex U.

Proof. (a) TynS < ex U. Take a point « in the first set and assume
xd¢ex U. Since extremality is preserved under homotetias, /2 is not an
extreme point of U(6, 1/2), and so there are points » and w in S(0, 1/2)
such that z/2e(v; w) = §(6,1/2). By the central symmetry of 8(6,1/2),
—x/2e(—v; —w) = §(6,1/2). Applying the translation T:y —y+ 2 we
get x/2e(x—v; x—w) = S(x,1/2). The segments [v; w] and [x—v; z— w]
are parallel and have a common interior point, namely /2, hence there
is a non-degenerate segment [y; 2] containing /2 and such that

[y;2] c [v; win[z—v; c—w] = 8(6, 1/2)nS(z,1/2).
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As a consequence, there is ¢t = x/2 and teS(6,1/2)nS(x, 1/2).
In virtue of Lemma 2.6, x¢T,. A contradiction.

(b) ex U = TynS. Suppose zeS and x¢T,. By 2.6 there is ¢ # x/2
such that |t| = [t— x| = (1/2) |z|.Set 2 = z— . Then [2| = [z— x| = (1/2)|z|.
But #/2¢(t; 2) = 8(0,1/2)nS(x, 1/2) and, consequently, x/2¢ex U (0, 1/2).
From a previous remark it follows that z¢ex U.

THEOREM 2.8. T, = {Ax: AeR and veex U}.

Proof. Follows immediately from 2.7 and 2.4.

COROLLARY 2.9. Let x and y be points of E, a = |t—y|. Then vty
iff yeex U(x, a).

Proof. Assumeye7 (x). Theny — xeTyand,by2.8,{ =(1/a)(y— z)eexU.
By a previous remark y—axeexU (0, a) and yeex U(wx, a). The converse
implication follows in the same way.

3. Tense spaces. Fréchet [6] defined a normed linear space E to
be tense (espace tendu) if metric and algebraic betweenness coincide
everywhere, that is, using our notation, if Ty, = E. A closed convex set K
is rotund if, for any support hyperplane H, the intersection of H with K
is a single point. A normed linear space is rotund if its unit ball is rotund.
For further information regarding rotund spaces the reader is referred
to [5]. The following characterizations of rotundity are very simple and
the proofs are left to the reader.

LeMMA 3.1. If K is a closed convex set, then the following statements
are equivalent:

(i) K 8 rotund.

(ii) There is mo mondegenerate segment in bdry K.

(iii) Bdry K = ex K.

THEOREM 3.2. A normed linear space is tense iff it is rotund.

Proof. Follows easily from 2.8 and 3.1 (iii).

The preceding result was previously proved in [3], [4], [7] and [9],
and in a somewhat more restrictive environment in [8]. In a way, our
main result 2.8 complements the results obtained in [8].
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