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Orthomorphisms were first introduced in [14] by Nakano under the
name dilatators, and since then they have been very useful in many con-
texts. Their remarkable properties have been studied by many authors
(see [5], [6], [8], [11], [12], [14], [16], and [18]). However, the basic
results of these works are based upon the representations of Riesz spaces
by function spaces. In this note we shall show how to derive the funda-
mental properties of orthomorphisms directly from the lattice properties
of Riesz spaces. The main tool for this approach will be a result expressing
the lattice operations on the Riesz space of order bounded transformations
in terms of components (Theorem 1.3 below).

For terminology and fundamental concepts of Riesz spaces not
explained below we refer the reader to [3] and [10]. All Riesz spaces
under consideration here are assumed to be Archimedean.

1. The lattice structure of orthomorphisms. We start with the defini-
tion of a positive orthomorphism.

Definition 1.1. Let L be an Archimedean Riesz space. A positive
(linear) operator =: L — L is8 called a positive orthomorphism whenever
uAv = 0 implies w(u)Av = 0.

Clearly, if ®#: L — L i8 a positive orthomorphism, then uAv =0
implies = (u)A=(v) = 0. That is, every positive orthomorphism is a Riesz
homomorphism. Also, the sum of two positive orthomorphisms is a posi-
tive orthomorphism, and any positive operator dominated by a positive
orthomorphism is likewise a positive orthomorphism.

Some elementary characterizations of positive orthomorphisms are
included in the next theorem whose proof is trivial.

THEOREM 1.1. Let m: L — L be a positive operator. Then the following
statements are equivalent:

1. m i8 a positive orthomorphism.

2. For each w € L we have m(u) € B, (the band generated by w in L).

3. For each band B of L we have %(B) < B.
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In [5] and [8] it was shown via the representation theorems that
every positive orthomorphism is order continuous. An elementary proof
of this result appeared in [9]. Since this property is important for our
approach, for completeness another elementary proof is presented below.

THEOREM 1.2. Every positive orthomorphism 1is order continuous.

Proof. Let #: L —~ L be a positive orthomorphism and let «,|0
in L. We can assume that 0 < %, < « holds for all  and some % € L. Now let
w € L satisfy 0 < w < w(u,) < m(u) for each a, and then fix ¢ > 0.

Since (u, —eu)t A (u,—eu)™ = 0, it follows that

0 < [w—em(u)]H A (0, — eu)™ < 7((u, — eu)t) A (u,—eu)~ =0,
and 80

0 = [w—em(u)]t A (u,—eu)™ 1 [w—em(u)]t A eu.

Thus, [w—emw(u)]*Au = 0 for each e> 0, which implies (since
L is Archimedean) wA 4 = 0. Consequently, w = m(u)A w = 0. Therefore,
% (%,) { 0 holds in L, as required.

An operator n: L — L is said to be an orthomorphism if there exist
two positive orthomorphisms =x,, n, such that # = =, —n,. By Theorem 1.2,

o . . . o o
every orthomorphism x is an order continuous operator, i.e., if %, 9 u,

then 7 (u,) ©) 7 (u). The collection of all orthomorphisms on L is denoted by
Orth(L). Olearly, Orth(L) is a (real) vector space. Moreover, if # > o
in Orth (L) means = (%) > o(u) for each 4 € L™, then > is an order relation
under which Orth (L) is a partially ordered vector space. The positive cone
of Orth (L) consists precisely of all positive orthomorphisms on L. Indeed,
if the orthomorphism = = =, — =, satisfies >0, and uA v = 0 holds,
then

O<m(UAV B (UAV+A(U)AD =0,

8o that = is a positive orthomorphism.

In actuality, Orth(L) is known to be an f-algebra with the identity
operator as a multiplicative unit, and where the multiplication is the usual
composition of two operators. (A Riesz space L is said to be an f-algebra
if I is also an algebra whose multiplication satisfies uv >0 for each
u,v € L, and if uAv = 0 implies uwA v = wuArv = 0 for all we L*.)

If M is a Dedekind complete Riesz space, then £, (L, M) denotes
the (Dedekind complete) Riesz space of all order bounded operators
from L into M. As usual, we write &, (M) for &, (M, M).

For the discussion ahead assume at the beginning that . is a Dede-
kind complete Riesz space. If &, and =, are two positive orthomorphisms
on L, then from 0 < 7w, v &, < &, + =%, and 0 < #,A %, < =, it follows that
7,V %, and 7, A %, (taken, of course, in ¥, (L)) are both positive orthomor-
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phisms on L. Now, if # = x, — =, and ¢ = ¢, — g, are two orthomorphisms
on L, then the identity

BV 0 = (% + 03) V (014 7,) — (731 0,)

shows that zv o € Orth(Z). Hence Orth(L) is a Riesz subspace of %, (L).
It is now easy to see that Orth (L) is a band of %, (L) containing the identity
operator I. Hence B; < Orth(L), where B; is the band generated by I in
%, (L). In actuality, it is known that Orth (L) = B, (see Theorem 1.4 below).

Recall that if M is Dedekind complete and T, 8 €e&£,(L, M), then

Tv 8(u) = sup{T(v)+8(w): v,weL" and v+w = u}

and
TAS(u) = inf{T(v)+8(w): v,weL* and v+w = u}

hold in &, (L, M) for each » € L* (sce, e.g., [3], Theorem 3.3, p. 20). The
next theorem expresses the above sup and inf in terms of disjoint elements
and is of some independent interest in its own right.

THEOREM 1.3. Let L be a Riesz space with the principal projection
property, and M a Dedekind complete Riesz space. Then for each pair
T,8e%,(L, M) and w € L™ we have

Tv 8(u) = sup{T(v)+8(w): vAw =0 and v+w = u}
and
TAS8(u) =inf{T(v)+8(w): vAw =0 and v4+w = u}.

Proof. The first formula follows from the second. Indeed, if the
second is true, then

Tv8(u) = —(—=T)r(—8)(w)
= —inf{—T(v) —8(w): vAw =0 and v+w = u}
= sup{T'(v)+8S(w): vAw = 0 and v+w = u}.

Alsgo, if the second formula holds when T'A § = 0, then it is true in
general. Indeed, if this is the case, then the identity (I'— T'A S)A
A(8—=TAS8) =0 implies

0 =inf{(T—TA8)(v)+(8—TAS8)w): vAw =0 and v+w = u}

= inf{T'(v) —TA S(v)+8(w) —TAS8(w): vAw =0 and v+w = u}

= inf{T'(v)+S(w): vAw =0 and v4+w = u}—TA S(u).

Consequently, T'A 8(u) = inf{T'(v)4+ 8(w): vAw = 0 and v+w = u}
holds in this case.



258 C. D. ALIPRANTIS AND O. BURKINSHAW

To complete the proof assume TA8 = 0 in &, (L, M), and u» € L*.
Put e = inf{T'(v)+8(w): vAw =0 and »+w = u} and fix 0 <e<1.
Now let » be an arbitrary element of L such that 0 < v < . Denote by
P the projection of L onto the band generated by (v—eu)* and put w
= P(u). Clearly, wA (u —w) = 0. Algo, the inequality (v — eu)* < # implies

0<v—vAeu = (v—eu)t = P((v—eu)*) <P(u) = w,
and thus

(1) U—WSU—VF VA eU.

On the other hand, 0 < (v—eu)* = P(v—eu) = P(v)—eP(u) <v—ew
implies

1
(2) w<<—0.
&

Therefore, using (1) and (2), we obtain

0<e<T(u—w)+8(w)<T(u—v+vAeu)+8(w)
=T(u—o)+T(vA eu)+ S(w)

< T(u—0)+eT(w) +— 80 <%T<u—v)+sT(u)+%S<v)
= ~[T(a—v)+8(0)]+¢T(w)

for all v (0 <v<wu) and 0 < ¢ < 1. This implies (in view of TA 8 = 0)
0<e<elT(u)for all ¢ (0 < £ < 1), and hence ¢ = 0, as required.

Note. A special case of the preceding theorem was stated without
proof for linear functionals in [1] (Theorem 5, p. 513), where it was also
noted that it holds for regular operators. The referee has informed us that
Theorem 1.3 was proved first in Abramovié¢’s dissertation.

It should be also noted that Theorem 1.3 is false without assuming
that L has the principal projection property. For instance, if L = C[0, 1],
M =R, T(u) = u(0), S(u) = u(1), then A 8 = 0, while

sup{T (v)+ 8(w): vAw = 0 and v+w =1}
= inf {T'(v)+ S(w):wAw =0 and v+w =1} =1.
We are now in the position to show directly that if L is Dedekind

complete, then Orth(L) is a Riesz space under the pointwise lattice opera-
tios.
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THEOREM 1.4. If L ts a Dedekind complete Riesz space, then Orth (L)
18 precisely the band generated by the identity operator in £, (L). For every
pair n,, m, € Orth(L) and w € L™ we have

(3) mvmay(u) = my(u)vay(u) and 7 A 7y (u) = 7y (U)A 7o (u).
Moreover, Orth(L) with wmultiplication the composition operation

18 an Archimedean f-algebra with unit element the identity operator.

Proof. First we prove the formulas. To this end, let =, and =, be two
orthomorphisms. Replacing =, and =, by =, —mA=n, and n,— =, A 7,
(if necessary), we can assume that =, and =, are positive orthomorphisms.
Let u € L*. Clearly,

78y A Tp (%) < 78y (%) A 785 (u).
Next note that if v, w € L satisfy vA w = 0, then =, (v)A w = m,(v)A
Aw =0 must hold; and therefore m,(v)A m(w) = m,(v)A 7,(w) = 0
must also hold. Thus, if v, w € L satisfy vAw = 0 and v+w = u, then
7 (%) A 7y (u) = [7,(0) + 7 (W) ]A [72(0) + 7, (w)]
< 7, (0) A 78, (0) + 7, (0) A 785 (0) + 78, (0) A 785 (0) + 78, (W) A 85 (w0)
= 78, (0) A 75 (0) + 7, (W) A 78, (W) < 7,(0) + 7, (w).
From Theorem 1.3 it follows that
71 (%) A 7o (%) < 70y A 782 (0),

and 80 7, A ®,(u) = m,(u)A %3(u). The other formula follows easily from
the identity =, v ®, = 7, + % — %, A 7,

Next we shall show that Orth(L) = B;. We have already seen that
B; < Orth(L). For the converse relation, let 0 < % € Orth(L) and u € L*.
By Theorem 1.1, =»(u) € B,, and so

mAnl(u) = m(u)A nutn(u);

that is, #A nI = in &, (L). Since {mA nl} < B;, we have = € B;, 80 that
Orth(L) < B;. Hence Orth(L) = B;. The last assertion should be now
immediate.

Now let us consider an arbitrary Archimedean Riesz space L. The
Dedekind completion of L will be denoted by L°. If M is a Dedekind
complete Riesz space, and T': L - M is a positive order continuous
operator, then it is well known that T' can be extended uniquely to a posi-
tive order continuous operator T* from L’ into M. Specifically,

T*(u) = sup{T(w): weL and w<u} = inf{T(v): veL and v > u}
for each u € L’ (see [3], p. 26).
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If : L -~ L < L’ is a positive orthomorphism, then (by Theorem 1.2)
=z is order continuous, and hence it has a unique positive extension =*
from L’ into L°. It is easy to sce that =* is likewise a positive orthomorphism
on I°. From this observation it follows that every orthomorphism z on L
extends uniquely to an orthomerphism =* on L°.

It is not difficult to see that =+ n* from Orth(L) into Orth(L°)
is linear and one-to-one. Moreover, # > 0 if and only if #* > 0. Therefore,
Orth (L) is a Riesz space, and zx — #* is a Riesz isomorphism from Orth (L)
into Orth (L°). Note that if =,, %, € Orth(L), then (by Theorem 1.4) for-
mulas (3) hold in Orth(L) for each » € L*. In other words, if we identify
Orth(L) with its image under % > #* in Orth(L’), then Orth(L) is the
Riesz subspace of Orth(L’) consisting of all orthomorphisms on L° that
leave L invariant. Rephrasing the above we have the following result:

THEOREM 1.5. If L i8 an Archimedean Riesz space, then Orth (L)
18 an Archimedean f-subalgebra (with umit being the identity operator) of
Orth(L°). Moreover, if =,,n, €Orth(L) and u e L*, then formulas (3)
hold true.

-We continue with an important property of orthomorphisms.

LeEMMA 1.1. If n: L — L is an orthomorphism, then
lw(u)| = |=(lul)| = |=|(lul) for all ue L.
Proof. The desired identity follows from the relations

el (ful) > |7 (w)] = lw(u™) —@ ()] = |#(w?)] +lw ()]
=m(u*)v [-mw@)]+a(@)v[-mw)] = (#v —m)(u")+

+(mv —=)(u™) = =] (wF) +al(w) = |=l(lul).

The next result describes an important property of the domain of an
orthomorphism (see [18], Theorem 1, p. 195).

THEOREM 1.6. If two orthomorphisms agree on a set, then they agree
on the band generated by that set.

Proof. Let #, and =, be two orthomorphisms such that =, (4) = 7,(%)
for each 4 € D. We have to show that # = %, — %, = 0 on the band gen-
erated by D. Since, by Theorem 1.2, = is order continuous, it is enough
to establish that # = 0 on the ideal generated by D.

To this end, let » be in the ideal generated by D. Then there exist
%y, ..., U, € D and positive scalars 4,, ..., 4, such that

n
] <) Al -

=1
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Now by Lemma 1.1 we have

0< [mw(w)l = |=l(lul) < D) Al (lu]) = D) Alm(w)| = 0,
i=1 i=1

so that »(u) = 0, and the proof is completed.

An immediate consequence of the preceding result is that the set
where two orthomorphisms agree is always a band. In particular, the
kernel of an orthomorphism is a band (since it is the set where the ortho-
morphism and the zero orthomorphism agree). Remarkably, every ortho-
morphism s satisfies K, = (R,)%, where K, is its kernel and R, its range.
The identity that the kernel is the disjoint complement of the range was
shown in [5] and [8] via the representation theorems of Riesz spaces.

THEOREM 1.7. If = 48 an orthomorphism on an Archimedean Riesz
space, then K, = (R_)%

Proof. If u e (R,)% then w | =(v) for all ve L, and so =(u) L %(v)
for each v € L. In particular, »(u) | w(u). That is, w(«) = 0 and, there-
fore, u € K,. Hence (R, < K,.

Now let u € L. Since L is Archimedean and K, is an ideal, K, K2
is an order dense ideal ([10], Theorem 22.3, p. 114). Thus, there is a net
{u,+v,} = K, ®K? such that

0)
Uy + Vg 9 u.

By order continuity of =, we have %(v,) 9 7 (u). But, by Theorem 1.1,
%(v,) € K2 for each @, and 8o =x(u) € K2. That is, R, < K%. Therefore,
since K, is a band, K, = K% < (R,)% Thus K, = (R,)%

Birkhoff and Pierce [7] showed that every Archimedean f-algebra
is necessarily commutative. Zaanen using the formula K, = (R,)* was
able to present a simple and elegant proof of this result ([18], Theorem 2,
p. 196). He also pointed out, however, that this proof cannot be called
“elementary” since it rests upon the identity K, = (R,)* whose proof
was based upon the representation theorems of Archimedean Riesz spaces.
By the above, we see that Zaanen’s proof of “Every Archimedean f-alge-
bra is ecommutative.” can be carried through without representation
theorems. We note also that Zaanen’s arguments require only the conclu-
gion of Theorem 1.6 (see [18], p. 196).

For our next discussion we shall need one result from [18]. Let L be
an Archimedean f-algebra. Then for each » € L the (multiplication) oper-
ator =,(v)= uv for v € L is an orthomorphism on L. Conversely, every
orthomorphism on an Archimedean f-algebra with unit is a multiplication
operator ([18], Theorem 3, p. 196). A rephrasement of this result is the
following

7 — Colloquium Mathematicum 47.2
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THEOREM 1.8. Let L be an Archimedean f-algebra with wunit. Then
u +>m, 18 a Riesz isomorphism from L onto Orth(L), ¢.e., Orth(L) = L.
In particular, Orth (Orth(L)) = Orth(L).

2. Extending orthomorphisms. In this section we shall deal with
extensions of orthomorphisms and we shall need the concept of the
universal completion of an Archimedean Riesz space. A Riesz space
L is called laterally complete if every disjoint subset of L™ has a supremum.
If L is Archimedean, then there exists a unique (up to a Riesz isomorphism}
universally complete (i.e., laterally and Dedekind complete) Riesz space
L* such that L is Riesz isemorphic to an order dense Riesz subspace of
L*. With appropriate identifications we have the Riesz subspace inclusions
L < I’ = L* with L order dense in L*. The Riesz space L* is of the form
0= (L) for some Hausdorff, extremally disconnected, compact topological
space 2. If L has a weak order unit e, then the embedding of L
into C*(L2) can be taken so that e corresponds to the constant function
one on 2; for details see [10], Section 50. It is important to observe that
C*(Q2), with Q extremally disconnected, under the pointwise multiplica-
tion is an Archimedean f-algebra with unit element being the constant
function one. Therefore, the universal completion L* of an Archimedean
Riesz space L is an f-algebra with unit.

Now consider an Archimedean Riesz space L and a positive ortho-
morphism z on L. By the discussion of the preceding section, # extends
uniquely to an orthomorphism #* on L°. By Theorem 1.2, =* is a normal
Riesz homomorphism on L% and hence (by [3], Theorem 23.16, p. 172)
n* extends uniquely to a normal Riesz homomorphism from L* into
L", which we denote again by #*. The extension x* satisfies

n*(u) = sup{n(v): veL and v<<u} for each u (0 < u e L¥).

It is a routine matter to show that n* is likewise a positive orthomor-
phism on L*. Consequently, every orthomorphism = on L extends uniquely
to an orthomorphism =n* on L*. Clearly, = +> n* i3 a Riesz isomorphism
from Orth(L) into Orth(L*). If we identify Orth(L) with its image in
Orth(L*) under n +—> n*, then we see that Orth(L) consists of all ortho-
morphisms on L* that leave L invariant. In particular, since L* is an Archi-
medean f-algebra, every orthomorphism on L is a “multiplication” oper-
ator; that is, if # € Orth(L), then there exists some « € L* such that n(v)
= wuv for all v e L.

Rephrasing the above discussion we have the following result:

THEOREM 2.1. If L is an Archimedean Riesz space, then

Orth(L) = {n € Orth(L*): (L) < L}.
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The preceding theorem cannot be considered, of course, as “elemen-
tary”. However, it is a very powerful theorem. Next we shall derive most
of the results of [18] from Theorem 2.1.

Let L be an Archimedean Riesz space and let ¢ > 0. Then there exists
at most one product on L that makes L an f-algebra having e as its unit
element. Indeed, if two products - and * make L an f-algebra, with e as
unit for both products, then for each fixed » € L the orthomorphism
n,(u) = v-u—v*u satisfies n,(¢) = 0. Since in this case ¢ must be a weak
order unit (eAw = 0 implies w = (¢-w)Aw = 0), it follows from The-
orem 1.6 that n, = 0 on L, and 80 »-4 = v*wu for each v, 4 € L.

THEOREM 2.2. Let L be an Archimedean f-algebra with a unit e. Then
there exists a unique product on L* under which L* is an f-algebre having
the same unit e and containing L as an f-subalgebra.

Proof. Embed L (order densely) in L* in such a way that e cor-
responds to the constant function one of C*(2) = L*. Denote by - the
product operation on L, and by * the pointwise multiplication on C*(Q).

For each fixed u € L, the operator n,(v) = u-v (v € L) is8 an ortho-
morphism on L, and hence, by Theorem 2.1, n, extends to an orthomor-
phism on L* By Theorem 1.8 there exists some w € L* such that x,(v)
= wx*9p for all v € L¥. In particular, 4 = u-¢ = n,(¢) = w*e = w. Thus
u-v = u*v for each u, v € L, and 80 * extends - to L*. The uniqueness of
* follows from the remarks preceding the theorem.

It is worth observing that if L = C(X), then although the extremally
disconnected space £ (where L* = C*(£)) may have no direct relation
with X, the preceding theorem shows that C(X) can be embedded in C°(£)
in such a way that the two pointwise multiplications agree.

Examples of orthomorphisms. All examples below have ap-
peared in [18]. Next, we shall show how to obtain them from the preceding
discussion.

1. Let L = ¢o(X) for some non-empty set X. Then u +> n,, where 7, (v)
= uv for each v € ¢o(X), i3 a Riesz isomorphism from 1 ,(X) onto Orth (L),
and 8o Orth(L) = 1 (X).

The difficult part is to show that the mapping is onto. To see this
let # € Orth(L) and note that the universal completion of ¢,(X) is RZX.
By Theorem 2.1, n extends to an orthomorphism on RX, and so
there exists some % e RX such that =(v) = wv (pointwise product)
for each v € L. An easy argument now shows that u el (X), and hence
T =m,.

2. Let X be a locally compact Hausdorff topological space and let L
= (O (X), the Riesz space of all continuous real-valued functions on X with
compact support. For each u € C(X), the operator n,(v) = uv for v € C,(X)
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i8 an orthomorphism, and w > n, 18 a Riesz isomorphism from C(X) onto
Orth(L), and so Orth(C,(X)) = C(X).

Again the difficult part is to show that the above mapping is onto.
To this end, let = € Orth(L) and observe that C(X) is an Archimedean
f-algebra with unit. Embed O(X) in its universal completion according
to Theorem 2.2. Since L is order dense in C(X), the universal completion
of C(X) equals L* ([3], Theorem 23.21, p. 175); thus L = O(X) < L*.
By Theorem 2.1, x can be considered as an orthomorphism on L“. There-
fore, there exists some u € L* such that =(v) = v for each v € L; note
that v = =(e).

Next observe that for every open set V, the set

o

{feC(X): f=0on V}

is a band of L. Thus, by Theorem 1.1, if f € C,(X) vanishes on some open
set .V, then =n(f) =0 on V. In particular, if f, g€ C,(X) satisfy f = ¢
on V, then they also satisfy = (f) = n(g) on V. Now, for each open set
V with compact closure, choose f,e€C,(X) such that 0<f<1 and
fr =1 on V. Then f,(2)11 for each v e X, and so =n(f,){=n(e) = u.
On the other hand, in view of = (f,) = =(f;) on V nW, it follows that
{=(fy)} converges pointwise to some continuous function. This means
that v € C(X), and 80 = = =,,.

3. Let (X, 2, u) be a o-finite measure space and let L = Lp‘(,u) with
0<p< co. Then uv> n,, where m,(v) = uv for v € L, i8 a Riesz isomor-
phism from L, (u) onto Orth (L), and so‘Orth(Lp(y)) = L (u).

We need only to prove that the mapping is onto. To see this, let
n € Orth(L). Note that L* = ., the Riesz space of all equivalence classes
of u-measurable functions. By Theorem 2.1, = can be considered as an
orthomorphism on .#, and 80 there exists some % € # such that n(v) = uv
for each v € L. From standard arguments it now follows easily that
% € L, (u), and s0 n = m,,.

Note. For related work on orthomorphisms see [2], [4], [13], [15],
and [17].
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