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In [1] Furstenberg proved a multiple recurrence theorem for measure
automorphisms of standard probability spaces; this provided a measure
theoretic proof of the celebrated Szemerédi theorem in combinatorial number
theory. One version of Furstenberg’s theorem asserts that if 7,,..., 7, are
commuting measure preserving transformations of a standard probability
space (X, 2, p) then

1 N
liminf— Y p(ty"An...nt7"A)>0
N-wo Nn=1

whenever u(A) >0 (Thm. 7.14 in [2]).

Another interesting multiple recurrence result is the purely topological
multiple Birkhoff recurrence theorem (Thm 2.6 in [2]). It states that for any
finite set of commuting continuous transformations 7y, ..., 7, on a compact
metric space X there exist a point xe X and a sequence n, — oo such that

1;* x — x simultaneously for i =1, ..., . This theorem, although pertaining
essentially to topological dynamics yields a new proof of the classical van der
Waerden’s theorem on arithmetic progressions and a number of other
combinatorial results (see [2] and [3]).

The aim of the present paper is to apply the aforementioned recurrence
theorems to the recurrence behavior of discrete time Markov processes.

In Section 2 a single Markov operator is considered and certain
recurrence properties of the trajectories are proved, similar to those occurring
for the iterations of a single continuous mapping. Our methods rely on a
version of Furstenberg’s multiple recurrence theorem represented by Lemma
1 and on applying an upper continuous function F(x) which represents a
measure of multiple recurrence. A similar but somewhat simpler function was
exploited in [3] and [2] in the case of continuous mappings. We will also
make use of the interplay between the Markov operator acting on the
underlying phase space X and the shift transformation S on the space of
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trajectories Q@ = X x X x ... of the canonical Markov process (see [S] for
details).

In Section 3 we introduce a notion of multiple recurrence for families of
Markov operators on a compact metric space and prove that, under
additional assumptions, doubly recurrent points exist for two commuting
Markov operators.

1. Preliminaries. Let (X, X) be a measurable space. A transition
probability p(x, -) induces the Markov operator

Tf (x) = [f () p(x, dy)

acting on the space of all bounded measurable functions. If X is a
topological space endowed with the Borel o-algebra then p(x, -) is called
Feller if Tf is continuous for every continuous (bounded) f. (Only Feller
transition probabilities will be considered on topological spaces.) A
nonempty closed subset F of X is called invariant if p(x, F) =1 for every
xeF. If X is compact Hausdorff then by Zorn’s lemma minimal invariant
subsets always exist. T is called irreducible if X is already minimal.

For any transition probability p(x, ') and any probability measure v on
(X, X) a canonical Markov process (,).>0 is constructed on the product

space Q = X"° where No=10,1,2,...}. This means that {,(w) = w, and

there exits a unique probability measure P, on Q (called Markov measure)
such that

Pv {éOEAO’ ey ‘:nEAn} = J.XO T(XI T('-'Xn-l Tlu))d"

where n>0, A4,eX, and y denote the characteristic functions of A4;
(i=0,1,...,n). A probability measure u on (X, X) is called invariant if

fp(x, A)du(x) = p(A)

for every AeZ. If u is invariant then P, is S-invariant or Q where S
denotes the shift transformation; the canonical Markov process is then
stationary with respect to P,. For Feller transition probabilities on compact
spaces invariant probability measures always exist.

2. Multiple recurrence for a single process. The following lemma is a
consequence of Furstenberg’s multiple recurrence theorem ([2], Thm. 7.14).

LemMa 1. Ler p(x, ) be a transition probability on a measurable space
(X, X) and let u be an invariant probability measure. If u(A) > 0 then for every
[ =1 there exists xe A such that

P, {¢ne A, ExmeA, ..., EmeA for infinitely many m’s} > 0.
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Proof. In order to apply Furstenberg’s theorem we first reduce the
problem to a separable space. By a standard argument, there exists a
countably generated sub-o-algebra X, of (the equivalence classes of)
measurable sets such that (1) Ae X, and (2) the space [*(X, Z,, 1 is closed
under the action of the Markov operator T induced by p(x, -). Now let X,
be a standard probability space such that the Boolean algebra of measurable
sets (modulo null sets) in X, and in (X, Z,, ) are isomorphic. The action
of T can be carried over to X, and is induced by a transition probability on
Xo. We form the canonical Markov process (£,),>0 On

QO=X0 XXO X ...

Since (2, P,) is a standard probability space and P, is shift invariant,
Furstenberg’s theorem is applicable to the iterations S, S2, ..., S' and to
the set

{éoe A} c Qo.
Therefore, for infinitely many m’s, we have

P,(By=a>0
where
B, ={loe A, ¢n€EA, ..., Ene A},

In particular, P,(B) >0 where B = limsup B,,. Since
P,(B) = | P,(B)du(y),
A

P,(B) must be positive on a subset of positive u measure in A. Therefore,
there exists a point xe A (in both X, and X) such that P,(B) > 0. This
proves the lemma.

Now we let (X, d) be a metric space and p(x, ©) be a Feller transition
probability on X. Consider the following nonnegative real valued function on
the space X:

F(x) = inf inf fa: P, {d (&, ¥) <@, i=1, ..., I} > O}
m21 .
LemMMmA 2. F is upper semicontinuous.

Proof. Suppose F(x) <. We want to show that the same inequality
holds in a neighborhood of x. There exist m>1 and a <J such that
P.(B) > 0 where

B={d(Emx)<a,i=1,..., 1}

Since B is a finite dimensional open cylinder, there exists a continuous
function 0 < f <1 such that

0< féwn)f(@2m) --- (@) < x5(@)
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and

If(wm)f(me) f(wlm)dpx(w) > 0.

The last integral is the continuous function

T™(fT"(...S T")®)

so the inequality P,(B) > 0 holds in a neighborhood U of x. On the other
hand, if z is in the open ball V of radius 6 —a and center x then d(u, z) < &
whenever d(u, x) < a. This implies

P {d(&im 2)<d,i=1,...,1} >0
for all yeU, ze V. In particular
P {d(&im y)<6,i=1,...,1} >0,
or
F(y)<d6, inUnV.

Now we are in a position to prove the existence of “multiple recurrent
points” for stationary Feller processes. The following theorem is reminiscent
of the multiple Birkhoff recurrence theorem for iterates of a single continuous
map.

THEOREM 1. Let p(x, *) be a Feller transition probability on a complete
metric space (X, d). Assume an invariant probability measure u exists and X
= supp u. Then there exists a point xe X such that for every | > 1 and every
neighborhood U of x

Px{é,,,e U, ézme U, cees f,,,,e U} >0

for some m > 1.

Proof. We prove that the set of all such points x is residual. It suffices
to prove the assertion for a single /> 1.

For every open ball V in X we have u(V) > 0, therefore by Lemma 1
there exist a point xeV and a number m > 1 such that

P {éneV, tomeV, ..., Eime V} > 0.

This implies that F(x) assumes arbitrarily small values in every nonempty
open subset of .X. Now, by a standard argument, F(x) = 0 whenever x is a
continuity point of F. As a consequence of semicontinuity, F(x) =0 on a
residual set in X. This ends the proof of the theorem.

Our next result is a recurrence property of irreducible Markov operators
on compact spaces. All probability measures are assumed to be regular.

THEOREM 2. Let T be an irreducible Markov operator on C(X), X
compact Hausdorff. Then for every initial probability measure v and for every
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nonempty open set U the set
{n: £,eU}

contains arbitrarily long arithmetic progressions P, almost surely.
Proof.  Fix I > 1. The function

h(x) =P, 3n=>03Im>1¢,eU, ¢ nel, ..., &y imeU)}

is lower semicontinuous since the event within the braces is an open subset
of Q. Therefore h(x) attains its minimum on a nonempty closed subset F of
X, say, h(x) =a on F. Next we prove F =X. This will follow from
irreducibility as soon as F is shown to be invariant. But invariance of F is a
consequence of the inequality:

Th(x)=P,{3n>213Im=>1¢,eVU, ¢ €U, .., & meU) < h(x).
Now h(x) =const =a so we have T"h(x) =a and
P.{Vk=>13nz2k3Im>1

€U, LpimeU, ..., Epiime U} =lim T h(x) = a.

Denote by B the invariant event defined in the last formula and let u be
any ergodic invariant probability measure (that such measures actually exist
is a well-known fact and is a consequence of compactness and the Krein—
Milman theorem). Since u is ergodic, the Markov measure P, is also ergodic
with respect to the shift transformation of Q (see [5], Prop. V. 2.4). Therefore

@ = [P,(B)du(x) = P,(B)

is either 0 or 1. Now we prove that a # 0. In fact, by Lemma 1 there exists
xe U such that

Px{émEU észU él,nEU}.>5>0

for some m > 1. The event, say, C is an open subset of Q so we have
P,(C) > on a neighborhood V of x. By irreducibility, the trajectories
starting from any point y visit V infinitely often almost surely (see [4],
Lemma 2). By conditioning on the first visit to V' at a time n = k we obtain
by the Markov property that for every k > 1

P,{3n 2k LpimeU, SpiamelU, ..., Eprme U} > 0.
Denote the last event by C,. We have C, o C, o ..., so
P,(NC,)=6>0.

This means

Py {Vk > 1 an > k €n+meua én+2m6Ua tey €n+lmEU} > O
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so P,(B) >0, or « >0, and consequently a = 1. Therefore h(x) =1 and
P,{3n=203m>21¢&,eU, ¢, €U, .., & melUl = jhdv =1

for every initial distribution v. Now it suffices to consider the intersection of

the above events for [ =1, 2, ...
It should be noted that the assertion of Theorem 2 can be strengthened

if in addition to compactness X is metrizable (a countable basis of open sets
exists): For every initial distribution almost every trajectory visits all
nonempty open sets along arbitrarily long arithmetic progressions.

A class of Markov processes possessing strong recurrence properties are
the Harris recurrent chains. The transition probability p(x, ©) induces a
positively recurrent Harris process if there exists an invariant probability
measure u such that every subset of positive u measure is visited infinitely
many times almost surely for every initial state (see [6] for the definition and
properties of Harris processes). For aperiodic positively recurrent Harris
processes we have the following sharper version of Theorem 1.

ProposiTION. Let p(x,‘) be a positively recurrent aperiodic Harris
transition probability with invariant probability measure p. If u(A) > 0 then for
every 1> 1

P, {¢n€A, EameA, ..., Eme A for infimitely many m’s) = 1

for any distribution v.

Proof. The event D within the braces is asymptotic, i.e., contained in
the o -algebra generated by ¢&,, &,44, ..., for every n > 1. By Theorem 2.6 in
[6], P.(D)=0 or P.(D)=1. Since, by Lemma 1, P,(D) is not identically
zero, we obtain P,(D) = 1.

CoroLLARY. Let X, p(x, ‘) be a positively recurrent discrete Markov
chain (X is countable). Then for every xe X and every | > 1

P, {lm=x,&m=2X, ..., Ew = X for infinitely many m’s} = 1.

Proof. Without loss of generality we may assume that X is irreducible
(hence Harris recurrent). We may also assume that X is aperiodic — if
necessary, consider the iterated transition probability p’(x, -) on a cyclic
subset of X containing x. Now the Proposition applies with 4 = {x}.

3. Multiple recurrence for families of operators. We introduce a
general notion of multiple recurrence for a family @ = {T;: iel} of Markov
operators on a compact metric space X. First recall that if t is a continuous
mapping on X then a point x is called recurrent if there exists a sequence n,

— oo such that for every neighborhood U of x we have t™*xeU for all
sufficiently large k. Similarly, if T is a Markov operator on C(X), x will be
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called recurrent if a sequence n, — oo exists such that
T* xy(x) >0

or, equivalently, p("") (x, U) > 0 for k sufficiently large. If, still more generally,
@ = {T: iel} is a family of Markov operators on C(X), we say that x is
multiply recurrent with respect to @ if there exists a sequence n, — oo such
that for every neighborhood U of x and every iel

T™*2u(x) >0

for all sufficiently large k. Hence the notion of multiple recurrence for
Markov operators generalizes the multiple recurrence of continuous
mappings.

By Theorem 1, multiply recurrent points always exist if @ consists of
finitely many iterations of a single Markov operator. In fact, it follows from
the proof of Theorem 1 that recurrent points with respect to @
={T, T?, ..., T} form a residual subset of supp u for every invariant
probability measure u. This along with the following lemma and the Baire
category theorem implies that multiply recurrent points always exist for
cyclic semigroups of Markov operators.

LemMMA 3. Let @ be the union of an ascending sequence of finite families
d,(I=1,2,..) of Markov operators on C(X). If x is multiply recurrent with
respect to all the &, (I = 1, 2, ...) then x is multiply recurrent with respect to ®.

Proof. Let U,, U,, ... be a basic neighborhood sequence for x and let
x: denote the characteristic function of U;. For every i > 1 there exists n; > 1
such that

T x;(x) > 0

for all Te @; and we may assume that n, <n, <... Now for every Te @ and

every j>1 the sequence n; satisfies the inequality T" xj(x) >0 for all i
sufficiently large.

It should be noted that monothetic semigroups need not possess
multiply recurrent points.

Example. Let X be the circle group and consider the translation
homeomorphisms 7, x = zx (ze X). Let & = {1,: ze X}. Suppose there exist

yeX and a sequence m, — oc such that ¥y —y for every z. This would
imply z™ — 1 for all ze X. To prove that this is never possible, choose an
increasing subsequence m, of n, such that Zm,‘/m,‘,r 1 < 1/4. Define by
induction a sequence 0 < g, < 1 such that the fractional part of the number

a a, _
mk(_l+...+ Link +au
m, m,_,
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differs from 1/2 by less than 1/8. Now let t = ) a,/m, and z = ™. It is easy
to see that the fractional part of m,t differs from 1/2 by less than 3/8 so the
sequence

ka - eznimkt

does not converge to 1.

By the Birkhoff multiple recurrence theorem any finite set of commuting
continuous transformations possesses a multiply recurrent point. (In fact the
same is true of all countable commuting sets due to Lemma 3.) In the case of
two commuting Markov operators we are able to prove that under
additional conditions — always satisfied by continuous transformations —
doubly recurrent points exist.

To specify these conditions, for every Markov operator T on C(X) we
define the compact valued mapping by letting

T(x) =supp T*9,.

The mapping x — T(x) is easily seen to be lower semicontinuous, i.e., for
every open set U in X if the intersection T(x) U is nonempty then it
remains nonempty in some neighborhood of x. It is also not hard to see that
the graph of the relation ye T(x) is closed in X x X if and only if x —» T(x) is
in addition upper semicontinuous (which is also equivalent to saying that x
— T(x) is continuous for the Hausdorff topology on the space of nonempty
closed subsets of X).

THeEOREM 3. Let T,, T, be commuting Markov operators on C(X), X
compact metric. Assume in addition that the relations ye T,(x) are closed (i
=1, 2). Then there exists a doubly recurrent point x, for T,, T,).

Proof. Let 2 = X"°*™° For every n > 1 we define , to be the set of
all weQ satisfying

wk+1,)eTy(wk,D); O
w(k, I+1)e T (w(k, )); O
Since the relations are closed, the sets £, are also closed. Next we prove

Q,# O for n> 1. Choose any xe X and let w (0, 0) = x, w(n, n)e(T; T,)"(x).
By assumption, the images of closed sets are closed so by compactness

(T, T)"(x) = (T, )T, T)" ' (¥)].
Therefore there exists ye(T; T,)" '(x) such that w(n, n)e(T; T5)(y). We let

oh-1,n-1)=y.
Similarly we obtain w(k, k), k=0, 1, ..., n—1, such that

wk+1, k+1)e(T; T)(w(k, k).
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In like manner (using commutativity) there exist elements w(k, k+1) and
w(k+1, k) such that

wk+1, ke T (w(k, k), ok+1,k+1)eT(wk+1, k),
ok, k+1)e T, (w (k, k), w(k+1, k+1)e T (w(k, k+1))

for k=0,1,...,n—1. Since, in general, weT(v), veT,(u) implies
we(T; T) (u), we have

ok+1, k+2e(T; T)(wk, k+1),
wk+2, k+1)e(T, T (w(k+1, k)

for k=0,1,...,n—2. In the same way we can construct a whole array
wk, ), 0<k<n 0<I<n, such that

wk+1,DeTy(w(k, )); k<n,
ok, I+DeT(wk, D); 1<n.

This proves Q,# @ and, by compactness, Q, =12, # @. It is now
obvious that Q_ is invariant under the shift transformations S, w(k, ) =
wk+1,]) and S,w(k, ) = w(k, I4+1). By the multiple Birkhoff recurrence
theorem (Thm. 2.6 in [2]) there exists woe R, such that S;*w, — w, in Q
for. a sequence m — co. If, in particular, x, = wy(0, 0) then for every
neighborhood U of x, there exists an n, such that wy(n, 0)eU and
wo(0, m)eU. Since wye,, this implies

T*(x)nU # 0
so X, is doubly recurrent with respect to {T;, T,}.

Added in proof.

1. Remark. If X is finite, then any finite family of Markov
operators (i.e. stochastic matrices) having a common invariant probability
measure yu is multiply recurrent. In fact, we may assume suppu = X.
Now there are no transient states, so each T, is completely reducible and

for every x in X we have T, X (X) >0 for some m; > 0. Consequently,
"X (x) >0 for m=m, ...m and i=1, ..., . In particular, any com-
muting stochastic matrices T;, ..., 7, are multiply recurrent.

2. The study of multiple recurrence will be continued in a forth-
coming paper.
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