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A COUNTEREXAMPLE ON GENERALIZED CONVOLUTIONS

BY

K. URBANIK (WROCLAW)

Notation and preliminaries. The aim of this note is to solve a problem
concerning the regularity of quasi-regular generalized convolutions posed by
Kucharczak in [1], P 826. Let us recall some definitions. We denote by 2
the set of all probability measures defined on Borel subsets of the positive
half-line R*. The set 2 is endowed with the topology of weak convergence.
For pue 2 and a > 0 we define the map T, by setting (T, u)(E) = u(a™ ! E) for
all Borel subsets E of R*. By J, we denote the probability measure
concentrated at the point c. For u, ve # we denote by uv the probability
distribution of the product XY of two independent random variables X and
Y with probability distributions u and v, respectively. The operation uv is a
commutative semigroup operation with the properties

(1 TLu=dp (a>0, ue?),

(2) (cut(l=c)v)A=c()+(1—=c)(vd)) O<c<1,pu,v, ieP.

Moreover, we have the following simple relations:

ProposiTION 1. If u, — u, then p,v — uv.

PrOPOSITION 2. If v # 8¢ and u,v — A, then the sequence u, is conditional-
ly compact and each its limit point u fulfils the equation puv = A.

A measure v from 2 is said to be cancellable if the equation vu = vA
yields u = A. Propositions 1 and 2 imply the following statement:

ProposiTION 3. For cancellable measures v the relation pu,v— A holds if
and only if p,— p and pv = 1. .

A continuous in each variable separately commutative and associative
#-valued binary operation o on 2 is called a generalized convolution if it is
distributive with respect to convex combinations and maps T, (a > 0) with d,
as the unit element. Moreover, the key axiom postulates the existence of
constants ¢, and a measure ye # other than J§, such that

3) T, 09" — 7.
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The power 67" is taken here in the sense of the operation o. The set £ with
the operation o and all operations of convex combinations is called a
generalized convolution algebra and is denoted by (2, o). For basic properties
of generalized convolution algebras we refer to [2]. In particular, generalized
convolution algebras admitting a non-constant continuous homomorphism
into the algebra of real numbers with the operations of multiplication and
convex combinations are called regular. The class of regular algebras co-
incides with the class of all algebras admitting an analogue of characteristic
functions ([2], Theorem 6). A generalized convolution algebra is said to be
quasi-regular if in condition (3) we assume in addition that the sequence c,
“tends to 0. This notion has been introduced by Kucharczak in [1]. It has
been proved in [2] (Theorem 4) that every regular generalized convolution
algebra is quasi-regular. Kucharczak asked in [1] (P 826) whether the
converse implication is true. We shall answer this question in the negative
constructing a family of quasi-regular and not regular generalized convolu-
tion algebras.

We begin with the following simple lemma:

LEMMA. Suppose that a generalized convolution algebra (2, o) is regular
and

(4) 5x051 =x61 061+(1_x)61 (OSJCQ 1).

Then the measure 6,00, is absolutely continuous.

Proof. It has been proved in [2] (Theorem 6) that each regular
generalized convolution algebra admits a characteristic function, i.e. a continu-
ous isomorphism from (2, o) into the algebra of all real-valued bounded
continuous functions on R* with the topology of uniform convergence on
every compact subset of R* and with the operations of pointwise multiplica-
tion and convex combinations. Moreover, the characteristic function is an
integral transform

) A@) = gQ(tu)u(du) (teRY).

Here the kernel © is non-constant and continuous on R*, Q(0) = 1, and
|2(t) <1 for te R*. Equation (4) can be written in terms of characteristic
functions as follows:

Q(xn)Q(t) = x*()+(1-x)Q() ((O<x<1,teR?).

Put A= {t: teR*, Q(t) # 0}. Since Oc A, the set A is non-void and a
= sup A > 0. Moreover, the last equation yields

(6) Q(xt) =xQ2t)+1—-x 0<x<1,teA).
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Let a,c A and a,— a. Given t <a we put x,=t/a,. Then 0 <x, <1 for
sufficiently large n and, by (6),

)] Q(t) = 2(x,a,) = x,2(a)+1—x,

for sufficiently large n. Suppose that a = oo. Then x, — 0 and, by (7), Q(t) = 1
for all teR*, which yields a contradiction. Thus a < o0 and, by the
continuity of Q, Q(t) = 0 for ¢t > a. Further, taking into account (7) we infer
that Q(t) = 1—t/a for t < a. Consequently,

Q(t) = max(1—t/a, 0)

for a certain a > 0. By standard computations we get the formula
(6,08,)" (1) =2*(t) =2 [ Q(tw)u™>du
1

which, by (5), yields the assertion of the Lemma.

Counterexample. For any pair u, ve P we shall denote by u[Jv the
probability distribution of max (X, Y), where the random variables X and Y
have the probability distributions y and v, respectively. It is clear that (2, [J)
is a generalized convolution algebra. Let p be an arbitrary real number
satisfying the condition 0 < p < 1. Put

AME)=(1-p)é,(E)+p [ u ’du
En{1,®)

for all Borel subsets E of R*. By standard computations we have

(®) ()-50) D()-éo) = Ado,

) (202 OI(4dy) = 4 [( 1-p

a

. a
b>6b+p5na:| . (agba b> 0)9

where o is absolutely continuous on R* with the density g given by the
formula

( 2p 1

2p—1u® (2p-Du'*ta-p
Uu) =« 1+2]0 u

g Tg p=3%uzl),

. 0 otherwise.

p#3u=l),

Taking into account (1), (2) and the distributivity of [0 with respect to
convex combinations we infer, by Proposition 1, that for every pair u, ve 2
there exists a measure o(u, v) satisfying the equation

(10) (4w O () = Ao (u, V).

10 — Colloquium Mathematicum LIV.1
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In particular, for every n there exists a measure y,€ # such that

(] 1) Ti/,, ).D" = (161/”)D" = l'}’n.
Observe that
T,/n AV ([0, x)) = (1 —p/nx)" if x = 1/n,

which yields the convergence
(12) Timi™"— o,

where ¢([0, x)) = exp(—p/x) (xe R*). By (11) and Proposition 2 the sequence
y, is conditionally compact and each its limit point y fulfils the equation

(13) 0 =4y.

Now we are ready to prove that the measure 4 is cancellable. Suppose that
Au = Av. Then, by (13), gu = ov. Since

a

() ([0, x)) = [exp(—pu/x)B(du) (xeR*, feP),
0

from the last equation we conclude that the Laplace transforms of u and v
are identical. Thus u =v, which shows that the measure A is cancellable.
Hence the map (u, v) — o (u,-v) in (10) is well defined. Let us introduce the
notation uov = o(u, v). We shall prove that o is a generalized convolution.
Since / is cancellable. we infer. by Proposition 3, that the operation o is
continuous in each variable separately. By (1), (2) and (10), o is a commuta-
tive semigroup operation distributive with respect to operations T, (a > 0)
and convex combinations. Moreover, by (8) and (9), ,06, =3, (beR™),
which yields éoou = u for every pe #. Further, by (9) we have

(14) 6aoéb=(l—p%)5b+pg7;o @<b,b>0).

Finally, by (11), T;,,61" = y,, which by (12) and Proposition 3 yields the
convergence

(15) Tl/néin—’y,

where the measure y fulfils equation (13). Since ¢ # §,, we have also y # d,,
which shows that the operation o fulfils condition (3). This completes the
proof that o is a generalized convolution. By (15) the generalized convolution

algebra (£, o) is quasi-regular. It remains to prove that (£, o) is not regular.
Observe that, by (14),

(16) 6,06, =(1—p)d,+po
and
0,00, =(1-px)d,+pxc (0<x<1),
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whence the equation

follows. By (16), (6,08,)({1}) =1—p >0, which shows that the measure
0,00, is not absolutely continuous. Applying the Lemma we infer that the
generalized convolution algebra (£, o) is not regular.
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