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MONOTONICITY OF MULTIPLICATIVE FUNCTIONS
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We say that a multiplicative function f is non-decreasing on A <« N
if, for a,be A, a < b implies f(a) < f(b). Erdos [1] has shown that if f
is a multiplicative function non-decreasing on N, then with a suitable
non-negative k¥ one must have f(n) = n*. Moser and Lambek [2] have
given a new proof of this result and Pisot and Schoenberg [4] have proved
that if a multiplicative function f is non-decreasing on the set of all integers
composed of three fixed primes, then, on this set, f(a) = a* holds with
a suitable k > 0. Examples of other sets with the same property were
given in [3]. Now we formulate four properties of a subset A of N and
consider the problem of characterization of those sets 4 which have one
of them.

ProPERTY L. If a positive and multiplicative function f is non-decreas-
ing on A, then, for all a in A, f(a) = a* with a suitable k.

ProPERTY II. If a nowhere vanishing wmultiplicative function f i8
non-decreasing on AN[m, oo) with a certain m, then f(a) = a* for all a
in A.

ProPERTY III (1). If a positive multiplicative function f is non-decreasing
on A, then f(n) = n* holds for all n.

PROPERTY IV. If a mowhere vanishing multiplicative function f is
non-decreasing on AN[m, o) with a certain m, then f(n) = n* for all n.

Note that one can replace here the word “non-decreasing” by “non-
increasing” or “monotone” without changing the family of sets enjoying
the corresponding property.

Properties I-IV are maintained after deleting finitely many numbers
from A. Indeed, this is clear for properties II and IV, and if a positive
and multiplicative function f is non-decreasing for sufficiently large ele-
ments of 4, then g(n) = n*f(n) with a sufficiently large & is non-decreas-
ing on A. Thus properties I and III are also maintained.

(1) Prof. Schinzel informed the author that property III was considered by
Dr. Freud from Budapest.
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Evidently, IT implies I, and IV implies ITI. Prof. Schinzel observed
that also IIT implies IT. The converse implications are false.

Although ‘we are not in a position to give complete solutions to the
four problems, we can prove a rather general theorem which can be used
to give many examples of sets satisfying one of properties I-IV.

THEOREM. Let A = N and assume that A satisfies the following condi-
tions:

(i) A contains an infinite set of mutually prime integers.
(ii) There exwists an integer q > 2 such that if a,,a,,...,a,€ A and
(a;y a)) = 1 holds for all © # j, then the product a,a,...a, belongs to A.
(iii) The infinite product

2 . b . a
(1) nma,x{mm =’ mm?},

=1
where max is taken over a € A such that 2° < a < 2+, the first min over
be A such that a < b, (a, b) =1, and the second one over b € AU{1} such
that b < a, (a, b) = 1, converges provided the undefined terms are assumed
to be 1.

Then A has property 1.

Proof. Let W be the value of product (1) and let ¥ be any number
of A exceeding W. Denote by B the set of all integers greater than yW
which are prime to y and can be represented as products of ¢ —1 members
of A which are mutually prime. If ¢ = 2, then, of course,

B ={acA: a>yW,(a,y) =1}.

Now we are going to show that for each b in B there exist sequences
{p.} = A and {y,} = A such that for each n e N

(2) (b, @) =1,
(3) by < g, < b,
(4) bpn < @ui1s

(5) (b, vn) =1,
(6) O < gy < by,
(7) b <y, <by.

For n =1,2,3,...,we put

¢, =minl and ¢, , = minl,
I>by I1>bey,

where le A and (b,1) = 1.
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It is easy to verify that (2), (4) as well as the left inequality of (3)
are satisfied.
We have

n

?1 % _ P
by Ll bg,, by’

(8)

Since by and bg,_, lic in A, we can find, for each factor of the last
product, the corresponding greater or equal term of (1) and these terms
will be distinct because of b > 2. If for some n we had ¢, > b'*™, then the
value of (8) would exceed W and, consequently, product (1) would exceed
W, a contradiction.

Let

v, =max! and y,,, = maxl,
I<by I<by,

where 1 € A and (b,1) = 1.

Of course, if the sequence {y,} is well defined, then condition (5)
and the right inequalities of (6) and (7) are satisfied. Additionally, we have
v, < b"*L The condition b" < y, and the existence of {y,} can be proved
by induection.

Clearly, by € A. Hence, if y, does not exist, then W > by, contrary
to the definition of y. Similarly, we put b < vy,.

Moreover, if y,,, did not exist, then in view of by, € A we would
have

which is impossible.
We have also

n+1
by by, by

- )
Yi42 ¥ Yr+1

and if ,,, < b"*!, then the same argument as above would lead to W < W.
Now assume that f is a positive multiplicative function non-decreasing
on A and let a, b belong to B. By (2) and (4) we get

F(@)f (@) < f@nia)-
Hence (3) implies

F)f(a) < flp,).
From (5) and (6) we obtain

F(¥ns1) < FO)f(v0),
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and now (7) gives

F(wa) < f(7)f (D).

Since a, b > 2, there exist infinitely many triples (u, ¢, m) of positive
integers satisfying

(9) at<m<bt and bH<m<attt,
By (3), (6) and (9) we get ¢,_, <m < y,,,, and thus

FOIF (@) S F)ft*i(b),  flosmioss=2(q) < flosmioab+(p)

fllloga— 2/logm (a) < fl/logb+2/logm (b) .

As m may be arbitrarily large, this implies
fl/loga(a) <fl/lo¢b(b)’
and since a and b are arbitrary elements of B, we get
fl/loga(a) =flllogb(b)‘

Thus f(b) = b* with a suitable k¥ > 0 must hold for all b in B.

In view of (i), for each a, in 4, prime to y, we may find ¢ —1 elements
of A, say a,, a,, ..., a,_,, which are mutually prime, prime to y and exceed
yW. If ¢ > 2, we may write, for ¢+ =0,1,2,...,¢—1,

flag)f(ay)...f(ag_)) _ (doal aq—x)k
f(a)) a ’

and if ¢ =2, then f(a,) = a* and f(a,)f(a,) = (a,a,)*. As f is positive,
this proves f(a;) = a¥.

Finally, we see that for all a in 4 the condition (a, y) = 1 implies
f(a) = a*, and since (i) implies that for all a, b in A there is a number y
in A exceeding W and prime to a and b, the theorem follows.

COROLLARY 1. If a set A = N satigfies (i), (ii) and (iii) with an even q,
then A has property I1.

COROLLARY 2. If (a, b) = 1, then the set {an + b} (wheren = 0,1,2,...)
has property 1.

COROLLARY 3. The set of all square-free numbers has property II.

CorROLLARY 4. The set {3™(3n+1)} (where m =0,1,2,... and
n=0,1,2,...) has property III. '

COROLLARY 5. If (a, b) = 1, then the set {n: a|nvb|n} has property IV.
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