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A CONSTRUCTION OF RESOLVABLE QUADRUPLE SYSTEMS

BY

K. PUKANOW aNp K. WILCZYNSKA (WROCLAW)

1. Introduction. Let X be a finite set and let # be a family of subsets
(called blocks) of X. The pair (X, &) is called a system.
Definition 1. The system (X, #) is called a B[k, 4, v] design it
(i) |1 X| = o,
(ii) |B] = k for each B,
(iii) every pair {x,y} < X is contained in exactly A blocks of %.
The number b of blocks in B[k, 4, v] is

b= Av(v—1)/k(k—-1).
A necegsary condition for the existence of B[k, 4, v] is
Aw—1) =0 (mod(k—1)) and Av(v—1) =0 (modk(k—1)).
This condition is also sufficient for ¥ = 3, 4, 5 with exception of the
non-existing B[b, 2, 15].
Definition 2. Let (X, #) be a B[k, A, v] design. A family 2' < #

of disjoint blocks covering all elements of X with exception of exactly
one element will be called a parallel class of resolvable blocks.

Clearly, every parallel class of resolvable blocks in B[k, A, v] consists
of (v—1)/k blocks.

Definition 3. A B[k, 4, v] design (X, #) i8 called resolvable or an
RB[k, A, v] if the family # can be partitioned into parallel classes. The
number ! of parallel classes of blocks equals Av/(k—1). A necessary
condition for the existence of B[k, 4, v] is

(1) v=1 (modk) and Av=0 (mod(k—1)).

The sufficiency of (1) has been proved in the case of 1 = 2, k¥ = 3(?).
In this paper we prove

() H. Hanani, On resolvable balanced sncomplete block designs, Journal of
Combinatorial Theory (A) 17 (1974), p. 275-289.
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THEOREM 1. If v = p,Ps ... P,, Where Py, g, ..., P, are prime numbers
(not necessarily distinot) suoch that p; = 1 (mod4) for all 1< i< r, then
RB[4, 3, v] ewists.

In this case (k = 4, 4 = 3) condition (1) reduces to v = 1 (mod4)
and we also have | = v. Before presenting the construction of RB[4, 3, v]
we recall the definition of a resolvable pair design.

Definition 4. Let X = {1,2,...,2t+1} and let P denote the
family of all pairs in X. A system {P,, P,, ..., Py} of disjoint subfamilies
of P such that each P; consists of disjoint pairs with

| U {o, y}l = 21
{z,y)eP,

is called a resolvable pair dmgn.

2. Main construction. Let X = {1,2,...,4n+1} and suppose that
v = 4n+ 1 satisfies the assumption of Theorem 1. We construct a resolva-
ble pair design on X putting {z,y}eP; for 1<i<4n+1iff a4y =1
(modv). Clearly, we have

U {z,9} = X\{=},
{z.v)ePy

where @; = ¢/2 or (¢4 v) /2 according to the parity of v. With each {z, y} € P;
we associate an index r,, defined by

o { lo—yl if |o—y|<2n,
o m+l—|v—y| if [o—y|>2n.
It is easy to check that r,, takes each value from {1,2,...,2n}
exactly once.
Let the first row of a (2 x 2n)-matrix be equal to (1, 2, ..., 2n). Fix
an integer 8 satisfying

2<8<2n and 8241 =0 (modw)

and define the second row according to the following rule:
if a belongs to the first row, then define b by

sa =>b (modv) * and O0<b<4n
and put
_{b if b'< 2n,
"T\o—b if b>2m.

The matnx obta.med in this way will be denoted by C.

e

LEMMA 1. By a suitable permutation of columms every matriz C can
be reduced to the form

al 01 az 02 LN a” c“
¢, a, ¢ Gy ... ¢, a,]
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where, for each i and j # i,
a<e; omd  {a,0}n{a;, 0} =0

We omit an easy proof.
In the sequel the submatrices

(% %
(06 “f)
will be denoted by [a; ¢;] and called pieces of C.
Now we are in a position to construct an RB[4, 3, v] design (X, ).
Fix P; (1<i<4n+1) and let {x,y} eP;. We have r,m = a for some
a (1< a < 2n) and let ¢ be the entry of ¢ standing below a. Now we find
in P; a pair {2, w} such that r,, = ¢. Thus to every piece of O there cor-
respond two pairs {z, y} and {z, w}, 80 a quadruple {z, y, 2, w}. We define
the i-th parallel class #; of (X, #) as the family of all such quadruples
obtained from all pairs {#, ¥} € P;. The element x; of X not occurring in
any of those quadruples equals either /2 or (¢+9)/2.
THEOREM 2. # = {#B,, B3, ..., B,} 18 a resolvable design RB[4, 3, v].
For the proof it suffices to show that every pair {z,y} = X occurs
in exactly three quadruples of the system 4%, i.e. that # is B[4, 3, v], as

the resolvability of the systems follows directly from the construction.
To this end we will prove a few lemmas.

Define a (2 X 2n)-matrix M as follows: if (:) is the j-th column of

C, then the j-th column of M is of the form (6)’ where

|

’

a = |o—al,
. {o+a if'c+a<2n,
°“\4n+1—0—a if e+a>2n.

LEMMA 2. @ # 0 and ¢ # 0 for every ac{l,2,...,2n}.
Proof. Suppose @ = 0 or ¢ = 0; then
¢c—a=0 (modv) or a-+4¢=0 (modv)
and
a(l—8) =0 (modv) or a(l+8) =0 (modvw).

As a < v, there exists a prime p dividing (v, 8+1) or (v, 8—1). Thus
8 = 41 (modp), which leads to —1 = s = 1 (modp), and p = 2, a con-
tradiction. |

LEMMA 3. Every element of the set {1,2,...,2n} ocours in M exactly
twice.
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Proof. By Lemma 1 it is obvious that every entry of M occurs in
M at least twice. We shall show that each column of M coincides with
some column of C. For any piece [a ¢] of O we first consider the following
case:
¢ =38 (modv), o¢=>b (modv) and a+d>2n.

In this case we have @a = ¢—a = sa—a (modwv), 8o

8a = 8%a—sa (modv).
Hence
86 = — (a+38a) (modo)

and in virtue of ¢ = —(a+b) (modv) we get
8d = ¢ (modv).
The proof of the remaining cases, namely,
= —b (modv) and a+4b>2n,
= —b (modv) and a+b< 2n,

¢6=0) (modv) and a+b< 2n,
is analogous.
Let [a, o¢,] and [a; o¢;] be two distinct pieces. Suppose a, > a,.
By the first part of the proof it suffices to show that &, # d, and @, # é,.
Suppose to the contrary that

(*) 61 = d’ or (**) &l = 6,.
In case (*) we get ¢;—a, = ¢;—a;. Let
0; = 8a, (modv) and ¢y = sa, (modv).
Then
a,—a,—38(a;—a,) = 0 (modv).
Let ay—a, = a5 or a,—a, = a;, aye{l,2,...,2n}. Hence a;—sa,
= 0 (modwv), but sa; = L¢3 (modo), 80

dg =0 (modv) or ¢; =0 (modv),

which contradicts Lemma 2.
If 0, = —sa, (modv) and ¢; = sa, (modv), then

a,—a; = —38(ag+a,) (modo).

Let a;—a, = a3 or a;—a, = a; and a,+4a;, = g, or v—(a,+a,)
= a,; then
a3 = +¢, (modv),
which is impossible.
The proof of (*+) is analogous.
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LEMMA 4. Every pair {x,y} in X ocours in at least three quadruples
of &.

Proof. By construction, every pair {®, y} belongs to exactly one
P, and a8 such it occurs in exactly one quadruple of %#;. It remains to
show that {», y} is also a subset 6f two other quadruples in %, so that
there exist exactly four elements z,, w,, 23, w; € X such that the sets

{®,2,,y,w,} and {®, 2;,y, w;} belong to #. By construction there exist
numbers z and w such that

{z,2}eP; and {y,w}eP, for some j # 1.

Therefore, one of the following two conditions holds:
I) e+z=y+w=jor oa+z=y+w = j+0,

(O)x+2=j and y+w = j+v(@+2 = j+v and y+w = j, respec-
tively).

For the sake of simplicity we may assume, without loss of generality,
that 7, < =n.

(I) Let » > y and w > 2. Without any loss of generality we assume
that # —y < 2n. In this case we have » —y = w —2, whence

B—Y = Tgy = Tipg-

Now we consider three subcases of (I):
(a) > 2 and w >y,
(b) # <2 and w >y,
(¢) »>2 and w<y.

(a) If x—2>.2n and w—y > 2n, then
oy +1ye = 0— (@ —2) +0— (0 —y) = 20— (2—9)—(0—2)
=20 —Toy—Tws = 2(V—17gy),

but, obviously, 7,,+7,, < 4n, 80 2(v—7,,) < 4n, which contradicts the
assumption 7., < 2n.
If »—2z < 2n and w—y > 2n, then

es— Tyl = |2 —2—(0—(0—9))| = |(@—y)+ (0 —2)—0|
= [0—(z—Y)—(w—2)| = [v—2r,],

and since, obviously, |r, —7y,| <2n, we have |v—2r,|< 2n, which
contradicts the assumption 7., < 2n.

Clearly, the symmetric case #—2z > 2n, w—y < 2n eliminates in
the same way. Thus we have v —2 < 2n and w—y < 2n. It follows that

6= rgtTyy =8—2+W—Y = 1gy+7y; = 2.
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In cases (b) and (c) we argue as in (a) and obtain ¢ = 27, or
@ = 27,

(II) Let us assume #+2 = j and y +w = j+ v (the symmetric subcase
of (ITI) requires only a graphical cha,nge) We may also assume 2 < y and
2 < w. The case of y —» < 2»n and w—2 < 2n is impossible, gince y —x
+w—2z = v would then imply 7,,+r,, = v, which contradicts the defi-
nition of 7,,. Therefore, we must have

y—o<2n and w—=z>2n.

Hence
(Y—2)+(w—2) =0, Tpt(W—2) =0, TmHy =0—(0—2)="1,,,

8O Yoy = Typye

We consider four subcases

(a). ®>2 and w >y,

(b) > 2 and w < y,

(¢) #<z and w >y,

(d) s < 2 and w < ¥,
and analogously as in (I) we obta.m 0 = 21, ord = 27,,. Since by Lemma 3
every element of {1,2,...,2n} occurs in M exactly twice, there exist
exactly two pairs, say {z,, wl} and {2,, w,}, such that

{®, 21}, {?/"wl}ePIl and  {w, 23}, {y, ws} € P;,.

Thus the sets {z, #,, ¥, w,} and {w, 24, ¥, ws}, both containing {z, y},
belong to 4.

Since at the beginning of the proof it was stated that there is also
a quadruple in %; containing {w, y}, the assertion of Lemma 4 will follow
if we show that the three quadruples we constructed are really different.
But this can easily be deduced from condition (I) or (II), since each of the
three quadruples obeys one of them. '

Theorem 2 can now be obtained by means of Lemma 4 and by a simple
comparison of the number of pairs in # and the number of all pairs in X.

Theorem 1 follows immediately from Theorem 2.

Remark. Since there exist B[b, 1, v] designs for v = 1 (mod 20)
or v = b (mod 20), it follows from Hanani’s remark (op. cit., p. 285) that
there exist also RB[4, 3, v] designs for these v’s.
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