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By a norm on R?* we mean a functional N: R*> >R, such that

1° N(u) >0 for u # 0, ‘

2 Nu+v) < Nw+N(v),

3° N(Au) =]A|N(u), A€R.

A norm N is symmetric if N((x, y)) = N((Ixl, |yl)). We denote by & the set of
all symmetric norms on R? satisfying the condition N((1, 0)) = N((0, 1)) = 1.
The set & is convex.

The purpose of this note is to give a characterization of the set of
extreme points of .’ (denoted by ex.¥). This solves the problem (P 1223)
posed by Professor A. Pietsch at the Winter School on Functional Analysis
in January 1978(%).

To every norm N €% there corresponds a closed symmetric convex set
U (N) including points (1, 0), (0, 1), defined by

U(N)={ueR?* N(u) <1}.

The set U(N) will be called the unit ball. If we have a closed symmetric
convex set U = R? with (1, 0), (0, )€U, then the corresponding norm is
defined by the Minkowski functional

Ny(w) =inf {1 > 0: u/ieU}.

We put e, = (cos ¢, sin ¢). For a set W < R? such that (0, 0)eInt W we
define the function gy: [0, 2n) = R, by

gw(p) =inf{1 > 0: ¢, eW]}.
Further, for a function g: [0, 2r) = R, we define the set
V(g) = {Ae,: 0< A< 1/9(0), @€l0, 2n)}.

(*) See N. Tomczak-Jaegermann, Problems on Banach spaces, Colloq. Math. 45 (1981), pp.
45-47.



148 R. GRZASLEWICZ

For a norm N we have N(e,) =gyn(9) and the set

{ea/gum: @ €[0, 2m)} = {u: Nw) =1} =S(N)

is the boundary of U (N) (unit sphere). Suppose a closed bounded set W c R2
has the following property: if ueW and A€[0, 1], then AueW. Put

=supi{d: de, eW}.
aw (®) p{ ¢ }

The set W is convex if and only if the Euclidean length of a bisectrix in
a triangle generated by the vectors A,_,e,_,, Ay+.€y+. (Which is equal
to (24y-aAy+4€O80)/(Ay_o+4Ay+,) is less than or equal to 4, for all
¥, a €[0, 2n). Therefore, the set W is convex if and only if

(%) 29w (p)cosa < gw (@ +0)+gw (@ —a)

for all «, ¢ €[0, 2n). Moreover, the equality in (+) holds if and only if the
Vectors e,_./gw (@ —0a), e,/gw(P), €,+./9w(@+a) belong to a common
straight line.

Note that since the norm Ne€.Y' is symmetric, the function gy, is
completely defined by its restriction to [0, n/4].

We denote by N'((x, y)) =|x|+|yl and N*®((x, y)) = max(|x|, |[y]) the
I'- and [®-norms, respectively. If N €./, then

UN) cU(N) < U(N®)

and
91 2 Juny Z 9w
where g, = Jun and
cose for 0 < ¢ < /4,
dolo) =4
sinp for n/4 < ¢ < 7/2.

LEMMA. Let Ne¥. Then
N™:=2N-Ny €Y,
Where Vo = conv V(ng(N)—gcl))'

Proof. Obviously, N™ is symmetric and N"(ey) = N™(ey;) = 1.
Since we consider only symmetric norms (from ), it is sufficient to restrict
the proof to vectors (x, y) such that x, y > 0. Put

"Ay = Heep: 0 <A <29y (p)—cose, ¢el0, n/41},
As = eyt 0< 2 < 2y (0)=sin @, @ e[n/4, /2]}.
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The set A, is convex. Indeed, it is sufficient to verify inequality (») for the
function g(¢) = 2gy, () —cos ¢ for all ¢ and a with (¢ +a)€e[0, n/4]. We
obtain this inequality by using inequality (%) for g = gy, (U (N) is convex).
Analogously, A4, is convex (cf. Fig. 1).

A

Since
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Fig. 1

V(2um—9go) O (X, »): x,y 20} = A4, UA,,

it is not hard to see that there exist aq €[0, n/4], Bo €[n/4, n/2] such that

Vo = {Ae,: e, €Ay, @ €[0,ap]}uile,: e, €A4,, @€[Bo, n/2]}

uconv {0, Aag €ags l,o e,o}.

Thus

gvo(9) = %

where ¢, and y, satisfy

€oCOs(ag—7o) = 29y (@0) — cos g,

€0 €OS (¢ —7o)
ng(N) (P)—9x(9)

for ¢ €[ao, Pol,

fOl' ¢ 6[09 aO) U(BO’ 1‘[/2],

€o o8 (Bo— 7o) = 290w (Bo)—sin By.

Now we have N™*(e,) = h(¢), where h=29yx—gv, and h>=g,
(V(h) = U(N)). The set V(h) is convex. Indeed, since

h(¢) = g ()

for ¢ €[0, ag] U [Bo, n/2],
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we need to check that th_e set
B = \Je,: 0< A< 1/h(9), ¢€lao, Bol)

is convex. Convexity of B follows from the fact that the function h satisfies
(¥) for (p ) €[ao, Bol, Which is an easy consequence of the equality gy (¢)

= o COS(® — 7o)
Since V' (h) is convex, N™* is a norm, and the proof is complete.

Let N = (Nl +N2)/2, Ni 6.9’, i = l, 2. ObViOUSly, ng(N) = gU(N1)+gU(N2)‘
Since gy, 2 9o, We have gy, < 29ym—9go- It is easy to see that

UN) 2 V(Qum—9x) = A1V A,.
Thus by convexity of U (N;) we have U(N;) > V, (i, guw, < gv,)- Therefore,
Vo <« U(N;) <« U(N™).

THEOREM. Let N€%. Then N eex & if and only if
exU(N) c S(N®).

Proof. Let N=(N,+N,)/2, N;e¥, i=1,2 Then U(Ny,) = U(N).
Obviously,

conv(ex U(N) nS(N®)) = U(N,).
If exU(N) =« S(N®), then U(N) c U(N,). Thus U(N) = U(N;), Neex &.
Let Neex #. Since 2N = Ny + N™, we. have
N(e,y) = Ny (eq) = N™ (€,5) = N®(eg,) and Ny, (egy) = Negy)-

Since U(Ny)< U(N®), the extreme points of U(N) are the following
vectors:

€0, €4,/COS0g, €5, /Sin Py, €y3, ...
Hence ex U(N) c S(N™).
ExampLE. Let N2((x, y)) = \/x2+)? be the Euclidean norm. Then
IN? = N, + N™,

where

V-1 it 4=

<
Nyo((x, ) =< 2 3
2. /x*+y*—max(|x], [y) otherwise,

L4HVT

~ 3 9,

(x1+1y) 4
X
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7—1 4-./7
V1 (xl+) i 7

2 /xt+y% -
N™((x, y)) = 2 3
max (]x|, |y)) otherwise.
In this case,
7-1
sina, = \/_2 s, Bo=mn/2—a,.
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