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1. Preliminaries. Let E be the class of all real functions f(s) Riemann-
-integrable over any finite interval and such that

f(8) =o0(s) as s > L+ oo.

Given a function feZ and a positive number I, consider the n-th
interpolating polynomial

a - krx krzx
T
I;(w;f)=?°+2(akcos . 4 b, sin — )
k=1

with nodes
(1) s, —gn— 2 0, 41, 42,..)
y= 8 = =0, +1, +2,...).

It can easily be observed that

2 n
Iil.(w;f) = 2n+1 =§—nf(3v)D£b(sv_m)7
where

in(2n+1) =
n sSin(4n —_—
Iy t)——l—i-Zcos krt . 21

n(t) = 2 1 N 11

k=1 2s8in —

21

Denote by o (s) the step function which is equal to 2I»/(2n-+1)
for se<s,_,s8,)(» =0, +£1, +2,...). Taking an arbitrary interval
{a, b), suppose that

8o 1 <AL, <8 <. <8< b8y,
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We shall write

b 8
21
af 9ol (s) = 3= Yats)

for any function g defined in <{a, b> (cf. [6], II, p. 4). In particular,

1
Liwf) =3 [ 6D -adal

In Section 3 we shall prove that, for some f’s of class E, the last

integral tends to f(x) as I - oo, n — o0 and I/n — 0. Now a convenient
formula for I} —f will be prepared.

Evidently, if 0 <z <, then

x+1

1
L@ f)—f@) =7 [ {8 —F@)}Di(s—a)dwh(s)+
z—1
z-—1

z+1
1 1
+7 [ (6 —f@n P —a)dohs)— T [ {f(s)—f@)}Dis —a)dak(s)
l

=1
= Ji(2) + UL (2) — Wh(a).

In the case —Il <z <<0, we have

1 x+1
L@if)—f@) =5 [ {f6)—f(@)}Dhs —a)dal(s) +

-1

z+1

l -1
+7 [0 —f@)Dhis—m)dohie)— T [ {Fe)— (@)} Di(s —a)dab (s
z—1 ’

= Ju(@) + Uy (2) — Wy (2).

Assuming that 0<a<z<b<! and |f(z)| < K (a,b and K mean
constants), we have

x+1
1

W) < S | (0 @)

b+1 b+i

1 (
< HmEIZaE | lf 1£(8)] doh(s) +E lf aol(s)}.
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The function f is of class E. Therefore, for any ¢ > 0, there is an
S = 8(¢) > 0 such that |f(s)| < es if s > §. Hence

b+l byl

lf |f(s)|dw;(s)<slf sdul(e) <8ble it o —— <b,1> .
Consequently,
1 K 2l
l —
Wal@)l < 2sin {r (I — b)/21} {8b6+ l (b+ 2n+1)}’
i.e.,

lim W(x) = 0 uniformly in ze{a,bd),

l/n->0

provided that I — oo, n — oco. The summand U’ (z) behaves analogously.
This implies

(2) I(@; f)—f(@) = Jn()+o(1) as lfn—>0 (I,n > o),

uniformly in ze{a, b).
Considering —l<a<z<b<0 and |f(z)| < K, we obtain

lim T (x) = 0 = lim W' («) uniformly in xe{a, b).
ln—>0 ln—-0

Thus relation (2) holds uniformly in x over every finite interval
{a, b)> and, further, investigations may be concentrated upon

1 z+1
3) J@) =2 [ (8 ~f(@)Dis—a)dwh(s).

x—1

In the sequel, the following analogues of the Bonnet mean-value
theorems will be needed:

If the functions f(s) and g(8) are continuous in {a, by, and f(8) is non-
-negative monotonic in {a,bd, then

¢
f(a) sup | [g(s)dak(s),

a<i<d ' g4

b
4) | [ f®)9)dal(s)| <

a<i<

b
f®) sup | [ g(s)deh(s)|
E<b ' g

for non-increasing and non-decreasing f, respectively.

The proof runs as in the classical case.
By M(u), N(u) [respectively, M (u), N(u)] and M,(u), N.(u) (&
= 0, 1) we shall denote the suitable pairs of non-negative convex func-
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tions complementary in the sense of Young ([6], I, p. 16 and 170) such
that

M N
lim ) _ i Y™
u—>0+ U us04+ U
M N
lim () = lim () = oo, ete.
U—>00 U U~>00 (/)

For the inverse functions the symbols M~!(v), N~!(v), ete. will be
used. The second M-variation Vy(f; a, b) will be defined as in Section 1
of [4] and in Section 2 of [5].

2. Analogues of the Riemann-Lebesgue theorem. Throughout this
section the real-valued functions f(s) are Riemann-integrable over all
finite intervals and subject to further restrictions specified in particular
statements.

THEOREM 1. Suppose that there are three real mumbers h > 0, ¢t, ¢
and an even function ¢(s) non-increasing in {h, oo) and such that

(8)—ct 8)—ec~
Je e’ < 9(8), fe=e < 9(s)
8 8
for s=h and s << —h, respectively; moreover,
f p(8)ds < oo.
A
Then, for each real a,b (a <b) and 6> 0,
1 z—0 x4+l
limT(f i f)f(s)pg(s—w)dwi,(s) —0
ljn—0 x—1 z+8

uniformly in xela,bd), provided that I — oo, n — oo (cf. [6], Th. 1).

Proof. Given any &> 0, choose a 4> max(l, d,h—a-+1) such
that

[o o]

(5) f p(s)ds < e.

at-4-—-1
Taking zela,b) and I > 4, we write
z+A4 o+l

i@ =7 ( [+ [)f6)Pis—a)dakie) = P+e.

o XN z+ 4



Clearly,

z+l z+1
1
0=7 [ U®-c"Dhs—a)dokin+ S | Dis—a)dub(s) = @i+,
x+-4 x+4
and, by (4),
£
et , n(s—x) .,
2n4+1) ——— do;
1921 < Sisin 20 st}iwl fd Sin (2n +1) —5r— den(s)
ct 21 ctl
< < m=0,1,2,...).
24 2n-1 2n+1
Further,
| ll\l If(s)—e¢ |2(s—w) wp (8)
xz+4
x+-1 x+1
1 ' 1
<E(1+'%') [ sk <zt [ plds.
T+ 4 2 x4+ d4-1

Putting ¢ = max(|al, |b]) and applying (5), we get
1941 < (1+e) (n=0,1,2,...).

To evaluate P, we shall consider two cases.
1° Suppose first that f(s) is continuous in the interval {a — 8, b+ 4>.
Choose the partition '

. a+6 =t <{<..<t{=b+4
such that

6 .
Osc f(s)<—-— (¢=0,1,2,...,7-1).

In view of (4),

1
Pl < - su
IPI< 21sin {= 6 /21} z+d<££a:+d

T($—2)
21

dor (8)|-

ff(s )sin(2n +1) ————

Proceeding as in Section 3, 1°, of [5], we obtain |P| < ¢/2 if I/n is
small enough.
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2° In the case where f(s) is Riemann-integrable over {(a— 8, b+ 4>,
there is a function ¢(s8) continuous in this interval such that

b+4

ed
f £(8)—g(8)lds < .

a—06

Assuming that
S 1 < A—0< 8, <81 < ... <8< b+A4<L8,,,,

where s, denotes the nodes (1), we have

b4 r

2l
| o —g@avie = 5== Yife) g
a—9 v=k

Hence, by the definition of the Riemann integral,

b44 b+4 P
[ @—g@avk@ < [ 1f@—g@lds+
a—d a-4
for small I/n.
Writing
1 z4-4 1 x+-4 .
P== [ (J@-g@)Dis—a)dots)+T [ 9(6)Dhs—a)dwh(a)
z+0 z+0

and applying 1° we obtain

b+-4 z+4
1 1
PI< [ 61 =gl 55dabe)+ 7| [ 90 Dhis—a)dad(o
z+90

a+6

€ &

<E+E =€

if I/n is small enough. Thus

lim J;,(2) = 0 uniformly in ze<{a, b),
Un—0

and so, by the symmetry, the integral J;,(x) can be replaced by

— 1
Jl,n(m) = —l—

[ #6)Diis —a)da, o).
z—1

The desired result is now evident,
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Remark. If there exist four sequences {h;}}, {k;}, {¢;} and {c;}
of real numbers and two sequences {p; (s)} and {p; (s)} of non-negative
functions non-increasing with 1/|s| satisfying the conditions

i) O0<ht<hi<...,hf>o00, O0>hy =>hy >...,h, > — oo,

oo [+ o]
(ii) Dller 1+ D)o < oo,
v=1 v=1

(s)—¢f f(8)—¢; -
(i) fT <@, [T <o ()
for sech}, bl > and selh;,,, b, >, respectively,

oo hj—+1 oo h:
(iv) Y [ greyds+ D [ oy (s)ds < oo,
=1 h+ y=1 A
v v+1

the conclusion of Theorem 1 remains valid.

THEOREM 2. Let f(s)/s be of bounded variation over the intervals (— oo,
—H) and (H, o) for a certain positive H. Then the conclusion of Theorem 1

remains true.

Proof. As before, consider only the integral Ji,(z) = P4Q with
4> max(1, 6, H—a),l > 4, xela, d).

By the well-known Jordan theorem,

O _ fo—ntn (w>m),

where f,(s) (¥ = 1, 2) are non-negative non-increasing [non-decreasing]
in (H, o) [(—o0, —H)]. Consequently,

2 z+l
— _ k—li l _
0= (1 +f sfi(8) Dh (5 — 2)dh(s).

Applying (4) twice, we obtain

sD! (s —m)dwf,(s)]

rtd<é<z+l z

2
1
|Q|<Tka(w+A) sup
=1
2

1
<7 D fla+4)  sup

o=y r+A<E<c+l z

(s —x) Dl (s — ) dwi,(s)l +

f—n (—.

2
a
+= kak(xM) sup

r+A<é<z+l z

&
| Dhts —a)al s
ta
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2 ¢
< —ka(w—}—A) sup fsin(2n+1) fi—) ()

z+d<é,n<z+1 5

(s —x)
21

dwfl(s)

2
x .
—I—u E fe(x+A4) sup sin(2n +1)
= z+d<é<z+l z

T

2n+1 {1+ max jal, lbl)}ka(H (t>4,n=0,1,2,..).

The term P can be estimated as previously. Thus the proof is com-
pleted.
Taking into account the pair of functions

Talt) = 7 f Di(s—a)doh(s), Pial) =7 f (5— ) Dh(s —2) 4o (s)

(re(—o00, 0),te{x,x+1>,1 > J), and proceeding as in Section 2 of [5],
we easily get the following two auxiliary results:
LEMMA 1. Let

0 M) = (g>1)
or
G i) = uflog 2] " >

or ue(0,3/2>. If 1 >0, n =0,1,2,... and xe(—o0, ), then
iV;Io(¢Zn§ma$+l)<A’

where A 18 a constant depending only on q or y, respectively.

LEMMA 2. Given any q > 1, consider My(u) = u? for u > 0. Suppose
that 0 <1< C(n+1)"Y4(C = const, n =0,1,2,...) and xe(—o0, o).
Then

Var,(Pin; @, 0+ 1) < L

where L is a constant depending only on q.

These estimates correspond to that of Lemmas 2 and 3 given in [5].
Also an analogue of Lemma 4 can easily be obtained.

THEOREM 3. Suppose that f(s) is of bounded the second M-variation
over the intervals ( —oo, —H) and {H, ) (H > 0) when

(1) M(u) =u? (p>1)
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or
(ii) M(u) = exp(—1/u®) (0 <a<1/2)

for sufficiently small uw > 0. Then the conclusion of Theorem 1 holds.
Proof in case (ii). Retain the notation P and ¢ used as above,
consider M,(») as in Lemma 1 (ii), with y < (1—a)/a (0 < a < a < 1/2),
and put
M (u) = exp(—1/u=)
for small 4 > 0. Then

1 {°w 1\ - (1
_ =) T 2] =
NN (5) 7 () = o< =

(see [5], Theorem 3). Given any ¢ > 0, let us choose a 4 > ¢ such that

qu(f; a+4, 00)<e.
If
6) sra<v+A<s, <81 <. <8 <THI<8,; (a<zr<Dh),

where s, denotes the nodes (1), the Abel transformation leads to

e m—Fk
__ 2 b2 l B
Q o 2n +1 ;f(SV)Dn(sv w) - o +1 j—Zof(sm—j)'D'n(sm—j a7)
m—k—1 j
2
= 2n 41 ; ;{f(sm_j) —f_(sm_j—l)}-Diz(sm_i—'ﬁ)—*—
m—k
2 , , )
+ 2n+1 f(s")g Dy(sm-i—2) =@ +@".

Putting 4 = sup|f(s)| (a+4 <s<b+24), we have

ra ol
Q| <ﬂ, f DL(s—x)dwt(s)| as <
l 2n+1
x+4
Hence, by (4),
u 21 ul

19" <

< .
Slsin(rd2l) il S @nt1a ~° Tor small Ujn

Applying inequality (2) of Section 1 in [3] and above-mentioned
Lemma 1, we obtain

Q1< oVi(fia+4, 2 +1) Vig (BFn; 0+ 4, 2 +1)
< o’sV;IO((DZn; z,x+1) < ode.
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Consequently,
Q] < (14o0d)e and |P|<e for small I/n,

uniformly in ze{a,b) (see the proof of Theorem 1). This implies the
required assertion.

THEOREM 4. Let f(s)/s be of bounded the second M-variation over the
intervals (—oo, —H) and <{H, oo) (H = 0) with M (u) as considered in
case (i) of Theorem 3. Then, under restrictions of Lemma 2 and assumption
1/p+1/q > 1, the conclusion of Theorem 1 remains valid.

Proof. In view of Lemmma 1 in [5], for an arbitrary ¢ > 0, there
is a 4 > 4 such that

Viy(F;a+A4,00)<e, where F(s) = f(s)/s.
Further, if xe{a,b> and 1> 4, then

T [ foDis—adai

z+1 x4+l
=3 [ POG-0Di—)aole)+ T [ F)Dis—2)doh(s)

l
44 x+ 4

= T1+Tz. :

Nla

In case (6), the Abel transformation gives

m—k—1

2n+1 2 Z{F(smf ~F (851} (Sm—i— ) Dy (85— @) +

1=

g (sﬁZ(sm; #) Dl (s —2) = T +17.

Applying (4). and reasoning as in the proof of Theorem 3, we obtain

z+1
, 1
< PE) 5 s | [ sinentn) T D an )| <
z+a<t<z+l| g l

for small I/n if xe<a, b).
By inequality (2) of Section 1 in [3] and by Lemma 2,

1T < &V (F; @, 2+1) Vi (PFp; @, 0 +1) < 6Le
if 0<l<C(n+1)"", xela, b, with

. 1 - O (1) .1
= ST e ()2 (%) < =
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The term T, tends to zero with I/n, uniformly in « (cf. Theorem 3).
Next we proceed as in the previous proof.

3. Criteria of the Dini, Young and de la Vallée-Poussin type. Retaining
notation of Section 1, restrict ourselves to functions feE satisfying con-
ditions given in any of Theorems 1-3.

THEOREM 5. Suppose that, for every xela,b) (—oo<a<<b< o),
there is a function . (t) mon-decreasing in an interval {0, n)> (n = n(x))
and such that

If(@£t) —f(@)] < pe(t)  for 1e<0, 1)

n

and

0

Then
(7) lim I;,(z; f) = f(x)

l/n->0

provided that 1 — oo, n — o0 and a < x < b.
If, moreover, u,(t) = u(t) is independent of x and if

lim - ()

7—0 + %

——dt =0,

then convergence (7) is uniform in {a, b).

Proof of the first part (pointwise convergence). In view of (2),
it is enough to show that J(x), defined by (3), tends to zero as I/n — 0
(I, n — oo).

Taking an arbitrary ¢ > 0 and any xe{a, b), we can find a positive
0 <1 such that

28
4z (1) &
Mm(6)+0f <o

By an argument similar to thgmt of [6], II, p. 17-18,

<___.

" x4
|— [ 1)~ @) D (s — o) dol (o
T—0

for small I/n (cf. also the proof of Theorem 7).
Applying any of Theorems 1-3, we obtain

x—8 z+1

\— [+ [ )@ —s@yDis—oaaio | <+

21 zto

if I/n is small enough. Thus the proof is completed.
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THEOREM 6. Let f(s) be of bounded the second M ,-variation over an
interval {4, B>, where

(i) M,(u) =u" (p,>1)
or
(ii) M,(u) =exp(—1/u") (0<a,<1/2)

tor sufficiently small w > 0. Then relation (7) holds at every point of con-
finuity of f in (4, B).

If f is continuous at every point x of an interval {a,b) < (4, B),
convergence (7) is uniform in {a, b).

Proof. Given any 4 > 0, we have

x z+4

(f f){f (8) —f(2)} Dh (s — x) dewl (8) + 0 (1)

as I/n - 0, by any of Theorems 1-3.
Now we apply Lemma 1 and proceed as in [2], p. 292, and [5], Theorem
6 (see also the proof of Theorem 3).

THEOREM 7. Let f(s), being continuous at x, has a primitive function
in some neighbourhood of this point. Write

t
p() = [{fl@+u)—f(@)}du for te(— oo, o)

and
Loy ifto0
=1 " ’
0 if t=0.

Suppose |ty' ()| < A(t) for sufficiently small |t| = 0, where A(t) increases
with 1| <t and
).(t

—dt <
2]

Then relation (7) holds, whenever 1 — oo, n — oo (cf. [1], p. 247).
Proof. For an arbitrary ¢ > 0, we choose a 6 > 0 such that
At
A(8)+ A(—8) + f——(—)—dt

Jo ™’
Evidently, this implies

26

var x(t) = f |x'(t)|dt<—:?.

—20<t<<28 %28
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By the assumption, y'(f) = f(x+1t) —f(x) for te(— oo, c0). Hence
z+38
B@ =7 [ (-2 Dhis—a)dols) +o(1)
z—6
1 x+4
=Tx;£ x(s —2) D (s —x)dwl, (s) +
1 x+8
+7 [ (s—2)x (s—o) Dh(s —a)dwh(s)+o(1).
z-38

In view of Theorem 6, which generalizes the corresponding test of
Dirichlet-Jordan type, the penultimate integral tends to zero as I/n — 0
(T, n - o0).

Write

x x+4

R=%(f + [ )=z (s—2) Do —a)dak(s) = Byt Ry,

T

and consider the fundamental points (1) such that
Sl SO < 8 < 81 < oo < 8y, KTH0 < Spypyre

Then, putting h = 21/(2n+1), we have

z+46
|R2|<f AMs—a) sm(2n+l)¥|dwn(s)
2(s—ua) 21
8k
k+r
< 21 A(sp,—x) @n+1) (8 — ) i 21 A(s, — )
2n+1 2(s,—x) 21 2n+1 e 2(s,—x)

-—z(h +h2 ’1(("’+1 “{ 6)+f—}l(t—dt}

for I/n small enough (cf. [6], II, p. 18). Analogously,

il < {“ “f 14 }

Therefore, if I/n is sufficiently small,

A(t)

e 8
IRI<—2—{}~(<s +A(—0)+ f_ltl_dt} Y

whence |J}, ()| < &, and the result follows.
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Remark. For f’s of class E, Theorem 4 leads to Theorems 5-7
in which the assumptions of Lemma 2 together with 1/p+1/¢ > 1 are
added.
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