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In the formulation of Theorem 3.1 in [1] the words: “The measure
u...” should read as: “The full non-Gaussian measure u...”. The proof of the
theorem on p. 298 after defining the norm
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suffices to estimate the last integral. We have
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According to (3.1), the finiteness of the last expression is equivalent to
the condition
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Let us now assume that, for some j and n,
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Then ﬂ,,j- lJ,,(A"'x)=0 for M-almost all xeZ,. But this means that
A’"xJ_[{e,,j_lﬂ,...,e,,j}] for M-almost all xeZ,. The subspace
[{en_y+15 - e 1]t is A™l-invariant, and thus A-invariant; therefore
xJ_[{e,,j_l,,,, oo e,,j}] for M-almost all xeZ,. '
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Put
X = {xeRN: B"}-l+l(x) = 0, l= 1, ceey nj—nj..l}.

From the above considerations and the fullness of uy, and thus of M, on X
it follows that X — X'. (The notation as in Theorem 1.1) Let X and X’
denote the complex extensions of X and X', respectively. From the definition
of X' it follows that Sy ¢ X; thus the corresponding eigenvalue 6,¢SpA~!| X.
(A~! stands for the complex extension of 4A71)

Let now 6, be the eigenvalue of A~ ! having the greatest absolute value.
u is not Gaussnan, and therefore, by virtue of Theorem 1.1, 6, eSpA~'| X,
which gives
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for some | between 1 and n; —n; _, and for every n.
After some computations we obtain, for sufficiently large n,
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Thus, by (3.2), we get the following condition, equivalent to the existence of
the moment of order 2,
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The left-hand side in (3.5) is finite if and only if
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since |6, | is maximal. By virtue of (3.4),
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therefore the left-hand side in (3.6) is finite if and only if al6;|* <1 because
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is a polynomial with respect to n.

In other words, a/|4,|* < 1 where 4,  is the eigenvalue of 4 having the
smallest absolute value. The last inequality is equivalent to c/|A,|* <1,
which proves the theorem.

In Corollary 3.1 the measure u should be assumed to be non-Gaussian.
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