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OMITTING CARDINALS IN TAME SPACES
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1. Introduction. A topological space X is said to omit a cardinal x if its
cardinality is greater than » but it has no closed subspaces of cardinality x.
Perhaps the best-known example that does not require special axioms is the
Stone-Cech compactification of the integers: it omits every infinite cardinal
<2°([5], 9-12). On the other hand, the first-named author [7] has shown that if
the Generalized Continuum Hypothesis (GCH) is. assumed, no compact
T,-space can omit both x¥* and »** for any cardinal x». Other results on
omitting cardinals can be found in [6] and [9].

In this paper we will study which cardinals may or may not be omitted by
regular (this includes Hausdorff) “tame” spaces. Tame is our temporary term
for any space X such that | Y] < 2!"! for any subset Y of X. (We use the notation
|A| for the cardinality of A.) Tame spaces are easily seen to include all first
countable regular spaces, all linearly ordered spaces, and all regular scattered
spaces (Section 2). Even for them, the question of whether a cardinal can be
omitted depends very much upon the description of the cardinal and the
axioms one assumes. One illustration is provided by the real line: every infinite
closed subspace is either of cardinality w or ¢(= 2°), so that if one does not
assume CH, even it will omit one or more cardinals. Nor does it help to confine
our attention to compact scattered spaces, as Example 1 in Section 2 shows.
On the other hand, we will have some general results about when certain
cardinals cannot be omitted.

Our interest in these matters was stimulated by a manuscript [11] of
Monk, in which Problem 44 reads:

If A is a hereditarily atomic Boolean algebra, does it have homomorphic
images of every cardinality < |A|?

Since the weight of the Stone space equals the cardinality of 4 for any
Boolean algebra A, and since weight equals cardinality for compact Hausdorff
scattered spaces, and since a Boolean algebra is hereditarily atomic (the word
“superatomic” is synonymous) if and only if its Stone space is scattered,
Monk’s question is equivalent to:

If X is a compact Hausdorff scattered space, must X have closed
subspaces of every smaller cardinality?



194 1. JUHASZ AND P. NYIKOS

While we do not yet have a complete answer to this question, we do have
a negative answer in every model of "1CH (Example 1) and also in every model
in which the covering lemma holds with respect to the core model K (Example
2). Thus, if there is an affirmative answer to Monk’s problem in some model of
ZFC, it will have an inner model with many measurable cardinals.

However, it is also worth noting that some cardinals are easier to omit
than others. The most fundamental unsolved problem seems to be:

PrOBLEM | (P 1363). Is there any model of set theory in which ¢ is omitted
by some compact T, scattered space?

Our set-theoretic notation will be standard. In particular, we identify
a cardinal » with the set of all ordinals < %, and exponentiation is always
cardinal exponentiation. We use the notation

x<*=sup{x’:y < i}.

Our notation for cardinal functions on spaces will be as in [8]. In
particular, if peX, x(p, X) and Y (p, X) denote the character and pseudo-
character of p in X: the former is the least cardinality of a local base at p in X,
the latter the least number of open subspaces of X whose intersection is p. As is
well known, x(p, X) = y(p, X) whenever X is compact T,.

From now on, “space” will always mean “T,-space”.

2. Scattered spaces. A space is called scattered (or dispersed) if every
subspace has a (relatively) isolated point.

NortaTION. Given a space X, let I(X) = I,(X) denote the set of isolated
points of X. If « is an ordinal and I, has been defined for all < «, let I,(X) be
the set of isolated points of

X\ U {1,(X): B < a}.

It is a standard exercise to show that a space X is scattered if and only if
each point of X is in I,(X) for some a. Of course, this ordinal a is uniquely
determined for each point xe X. We denote it by i(x).

LEMMA 1. Every scattered regular space is tame.

Proof. Since every subspace of a scattered space is scattered, it suffices to

show that | X| < 2"™! for each regular scattered X. For each point x of X let
U, be an open neighborhood of x such that

O\x} < U {1,(X): B < i(0)}.

Then no two sets U, meet I,(X) = I(X) in the same set, and distinct points give
distinct sets U,.

THEOREM 1. If X is a scattered regular space and »~* = x, then X does not
omit x.

Proof. If | X| > %, then I(X) = ». If X omits %, so does every subspace in
the closure of x isolated points. Thus we may assume |[(X)| = ». We consider
two cases:
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Case 1. For all a < x, |I(X)| < =

In this case, I, (X) is nonempty. But if pel,(X), then there is a closed
neighborhood N of p such that N\{p} is a subset of | ) {I,(X): a < x}, which is
of cardinality x». Also, it is an elementary fact that every neighborhood of
p meets I, (X) for all a < ». Thus |N| = %, contradicting the claim that X
omits x.

Case 2. For some ordinal a < x, | (X)| > x.

Let o be the least such ordinal, so that |I,(X)| < x for all 8 < a. For each
point pe I (X), let F, be a closed neighborhood of p meeting I,(X) in {p} and
contained in | ) {I,4(X): B < «}. By the assumption on X, |F,| <x, and so

|F,n1y(X) <x for all F,.

But if p # q, F,nI(X) # F,n1,(X), and so I,(X) has more than x distinct
subsets of cardinality < x, contradicting the assumption »x<* = x.

COROLLARY 1. If GCH holds, no regular scattered space omits any regular
cardinal.

As a matter of fact, GCH is equivalent to the axiom that »x~* = x for all
regular cardinals x. Moreover, if ever A < x < 2%, then »<* > 2% and this last
inequality might even be strict, as in models where w, < 2% <2 (1 = o,
% = w,). There are even models where w is the only infinite cardinal » that
satisfies % <* = x, so it is natural to ask what happens in Theorem 1 when this
assumption is dropped. For cardinals between w and 2° we have a very
satisfactory answer.

ExaMPLE 1. Without using any set-theoretic assumptions beyond the
axiom of choice, Eric van Douwen showed that there is a locally compact,
locally countable (hence scattered) topology on R that is finer than the usual
topology, and has the property that any subset of R having ¢ points in its usual
closure, also has ¢ points in its closure in the new topology. (Descriptions of
such spaces may be found in [12] and [15].) Thus R with this finer topology
omits every cardinal strictly between w and 2, if such exist. The same applies
to the one-point compactification of this space, which thus provides a negative
answer to Monk’s problem in any model of CH.

The case of higher cardinals is not so clear. In [9], one of us describes
a model M(w,, 4) in which every compact space of character w, omits every
cardinal strictly between w, and 2°! = 4; by making 4 large enough we can put
arbitrarily many omitted cardinals in between. The construction generalizes to
give models M(x, 4) for all » in which » behaves like w, above. Among the
compact spaces of character » and cardinality 2% there are some tame spaces
like *2 with the lexicographical order. This space can be modified like R in
Example 1 to give scattered spaces of cardinality 2* which omit all cardinals
between x» and 2*.

There are a number of drawbacks to the examples we have just described.
First, they are not absolute, like R: we do not know whether every model of
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set theory has a compact space which omits every cardinal between » and 2%,
let alone compact tame or compact scattered ones. Second, the models M (x, A)
all utilize the collapsing of large (inaccessible) cardinals, so we do not know
whether the results can be shown consistent by merely assuming the consis-
tency of ZFC. Third, the models are distinct for different » and they “satisfy
GCH up to »”, so, in particular, we do not know of any where ¢ is omitted by
a compact tame space. And fourth, the scattered examples we have been able to
obtain by modifying *2 are not locally compact, and so they do not provide
any new answers to Monk’s question.

In an earlier draft to this paper, we posed the problem of whether there is
a model of ZFC in which a cardinal of the form 2* is omitted by some regular
scattered space; this has since been answered affirmatively. (Note that,
because of the third drawback, the foregoing examples do not answer this
question.)

3. Orderable and compact examples. A space X with a total order < is
said to be generalized orderable if it has a base consisting of intervals. By the
method of Dedekind cuts it is easy to show that every generalized orderable
space is tame. We also have a result like Theorem 1:

LEMMA 2. If X is a generalized orderable space and »~* = x, then X does
not omit x. X

Proof Suppose X is a generalized orderable space of cardinality > x. If
X has a point p such that y(p, X) > %, then X has a well-ordered (or reverse
well-ordered) sequence of cardinality x», and hence a closed subspace of that
cardinality. So suppose x(p, X) < x for all pe X. Let Y be a subset of X of
cardinality ». Each point in the closure of Y is the supremum (or infimum) of
a well-ordered sequence from Y, of cardinality < x. Since »x<* = , it follows
that |Y| = x.

The proof of the next result is similar, but more complicated. For it, we use
the theorem ([8], 2.5 and the following remark) that, in a space X, the set of
points that satisfy x(p, X) < 4 is of cardinality <d(X)*.

~ THEOREM 2. If X is compact and tame, x<* = x, and 2* < 2*"), then X does
not omit x.

Proof. If |X|> x, then d(X) = ». If X omits x, then we may assume

d(X) = » as in the proof of Theorem 1. Let
H={peX: x(p, X) < »}.
By the above remarks, |H] < »~* = ». Again we consider two cases.

Case 1. There is a point p of X such that x(p, X) = .

By compactness this is equivalent to Y(p, X) =x, and so there is

a well-ordered net {p,: ¢ < x) converging to p: Let {U,: £ < x} be a base of
open neighborhoods of p and let

Pgeﬂ{uaﬁ a< 6}
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By ¥(p, X) = » we can make the p, all distinct, and every neighborhood of
p contains all but < x of these points. Thus all points in the closure of
A = {p, = £ < x}, except perhaps for p, are in the closure of some subset of
A of cardinality < x». By tameness and x<* = x, we have |4| = .

Case 2. For each pe X\H, x(p, X) > x.

If p 1s such a point, there is an open F,-set containing H and missing p:
simply expand each point of H to a cozero set that misses p. Thus X has
a nonempty closed G,-set F « X\H. For all geF, x(q, X) = »*. This implies
¥(q, F) = x* for all geF. Since F is compact, |[F| > 2*" by the Cech-Pospisil
theorem ([8], 3.16). But since X is a tame and d(X) = %, |X| < 2%, contradicting
2 < 2",

PrOBLEM 2 (P 1364). Can the hypothesis 2* < 2** be dropped? From the
proof of Theorem 2 it follows that if there is a counterexample, there is one
such that no point is the intersection of < x open sets.

4. Countably compact, first countable spaces. The results in this section
shed further light on Monk’s question, especially in the case of singular
cardinals. The following lemma and its proof are obvious generalizations of
Theorem 1 in [10].

LEMMA 3. Let A and x be cardinal numbers such that either (i) A° < x or
(ii) A < % and x is of cofinality w. If X is a space of cardinality » such that each
point has a neighborhood of cardinality < x», then X is not countably compact.

THEOREM 3. If X is a locally compact, countably compact, first countable
space, and |X| > x, then X omits x if either (i) ¢ < x < % or (ii) x is a singular
cardinal of cofinality w.

Proof. By a classical result of Konig, ¢ does not have cofinality w, so that
in either case we have x < ¢ or x > c.

Now, if Y is a closed subspace of X of cardinality < ¢, then Y is countably
compact and locally countable: every compact, first countable space of
cardinality < ¢ is countable ([8], 3.17). Hence, by Lemma 3, |Y] # ». If |[Y| > ¢
and Y is closed, we use the fact that every point of X has a neighborhood of
cardinality < c¢: by Arkhangel'skil’s theorem ([8], p. 31), every compact first
countable space has cardinality < ¢. Then, if ¥ > ¢, Lemma 3 again implies
|Y| # 2. o

The converse of Theorem 3 (i) is true; in fact: -

LEMMA 4. If X is a first countable space and x = x* < |X|, then X does not
omit x.

Proof. The only properties of X that we use are tameness and countable
tightness; that is,

A=|J){B: Bc 4, B is countable} for all Ac X.
Then, if Y < X and |Y| = %, then |7I< Cx? = xn.
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COROLLARY 2. If X is a locally compact, countably compact, first countable
space, and ¢ < x < |X|, then X omits x if and only if x < x°.

For our next corollary, recall one version of the Singular Cardinals
Hypothesis (SCH): if 2°™ < x, then x*™ = x*. From this there follows: if ¢ < x,
and x is not a singular cardinal of cofinality w, then »¥® = x. This is shown by
induction, using the fact that every countable subset of x is a subset of some a < x.

COROLLARY 3. If CH + SCH (in particular, if GCH) holds and X is a locally
compact, countably compact, first countable space, and x < | X|, then X omits x if
and only if » is a singular cardinal of cofinality w. .

Theorem 3 and these last two corollaries may be vacuous in some models:
it is even an unsolved problem whether there is a locally compact, first
countable, countably compact space of cardinality > ¢ or a locally countable,
locally compact, countably compact space of cardinality > w,, in every model
of set theory. However, we now know that any “exceptional” model must have
an inner model with measurable cardinals.

ExampLE 2. If GCH + [, is true for every singular x of cofinality w, there is
a locally compact, locally countable, countably compact space of any cardinal
A except for singular cardinals of cofinality w. In [10] it is shown how to
construct such examples, using [],, to push the induction up above » when x is
singular of cofinality . The second-named author has Tecently observed [13]
that this construction is still valid if one replaces GCH by the axiom that the
cofinality of the poset {[x]®, =) is »* for all singular cardinals x of cofinality
w; that is, there is a set B of x* countable subsets of % such that, for every
countable 4 c x, there exists Be B such that 4 < B. Unlike “x® = »x*”, this
axiom is not destroyed by ccc forcing; more strongly, it holds in V whenever it
holds in an inner model M such that Covering (V, M) holds [13], and so does
[, for singular x ([3], Section 8). The core model K is such an M, confirming
the comment made prior to this example.

THEOREM 4. If “cf([%]®) = »*” and [, are true for all singular cardinals x of
cofinality w, then for each such cardinal x there is a hereditarily atomic Boolean
algebra of cardinality greater than x but no homomorphic image of cardinality x.

Proof. Take the Stone algebra (algebra of clopen subsets) of X + 1, where
|X| > » and X is locally compact, locally countable, and countably compact.
Then |£(X +1)| > x, and every homomorphic image of (X + 1) is the Stone
algebra of some closed subspace of X of the same cardinality.

The cardinal cf([%]®), which will be here denoted by »x* for convenience, is
an interesting concept, with the help of which we can extend Theorem 3 (ii) and
obtain some results on omission of cardinals < ¢. We begin with a set-theoretic
lemma, pointed out to the second-named author by J. Baumgartner.

LEMMA 5. Let x be a cardinal and let A be a collection of countable subsets of
x such that each infinite subset of x meets some member of A in an infinite set.
Then |A| = x*.
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Proof. Let y: x—x%=® be a bijection, where »=“ stands for the full x-ary
tree of height w. For each A€ A let (Y A)] stand for {o: there exists ae 4 such
that ¢ < y(a)}. Now, every countable subset of x» is a subset of

\J{ran o: 6e(¥4)|} for some A€eA.

Lemma 5 gives an alternative characterization of x*, as being the least
cardinality of a set 4 as described. Other elementary facts about x* are that
x < x* < »“ for all uncountable x and that x® = ¢-x* for all infinite ». Hence,
if %> ¢, then x° = x*.

LEMMA 6. If X is a locally compact, first countable space of cardinality x and
x <x*, then X is not countably compact.

Proof. By Lemma 3 (i), Arkhangel'skil’s theorem, and the above
elementary facts, it is enough to consider the case ¥ < ¢. In this case, X is
locally countable, and we can assign each point p a countable neighborhood
V,. Let A = {V,: pe X}. By Lemma 4, some infinite subset of X must fail to meet
any member of A4 in an infinite set, making countable compactness impossible.

COROLLARY 4. If X is a locally compact, countably compact, first countable
space and |X| > x, then X omits » if x < x*.

This corollary actually supersedes Theorem 3: if % > ¢, then x < x* is
equivalent to ¢ < x < »®, while if x is a singular cardinal of cofinality w, then an
elementary diagonal argument shows that » < x*.

The converse of Corollary 4 holds in the case » > ¢ (see Corollary 2). What
about if % < ¢? We can do it for the following special class: a space is called
w-bounded if every countable subset has compact closure. The spaces of Example
3 are all w-bounded, and it is even an unsolved problem whether there is a first
countable, countably compact space in every model that is not w-bounded (for
a discussion, see [13]).

Of course, for locally countable spaces, w-boundedness implies that every
countable subset has countable closure. This is a very strong version of tameness;
using it as we did tameness in Lemma 4, and substituting x* for x® everywhere,
we get

LEMMA 7. If X is a locally countable space in which every countable subset has
countable closure, and » = x* < |X|, then X does not omit x.

THEOREM 5. If X is a locally countable, w-bounded space and |X| > x, then
X omits » if and only if x < x*.

Proof. If X is as described, it satisfies the hypotheses of Lemma 7 and also
Corollary 4, since w-boundedness implies countable compactness for all spaces
and local compactness (and thus first countability) for locally countable spaces.

Now, what about the case where X is countably compact but not
w-bounded? Here, complications can arise even in the case x = w, and, of
course, w{f = w,. This is the theme of our final section.
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5. More on omitting w, . Recently, there have been some interesting results
on when locally compact, locally countable, countably compact spaces can
omit the regular cardinal w,. Of course, CH implies it cannot be omitted
(Theorem 1), but these results have to do with models where CH fails. One
result is

THEOREM 6 ([4]). If the Proper Forcing Axiom (PFA) holds, then a normal,
locally hereditarily Lindeldf, countably compact space is either compact or
contains a copy of ,.

‘As a result, PFA implies that normal, locally countable, countably
compact spaces cannot omit w, . It is still not known whether “normal” can be
dropped or replaced by “regular” (equivalently, “locally compact”) here or in
Theorem 6 (see [13] or [4]).(})

The Proper Forcing Axiom is a strengthening of MA(w,) and implies MA
when ¢ = w,. In the light of Theorems 1 and 6 it is patural to ask whether MA
implies that a normal (or regular), locally countable, countably compact space
cannot omit w,. The answer is negative:

ExAMPLE 3. In [14], one of us has constructed models of MA, with
¢ anything compatible with MA, in which there are separable, locally compact,
locally countable, countably compact spaces of cardinality ¢ in which every
pair of uncountable (equivalently, noncompact) closed subspaces must meet. It
is easy. to see that any such spaces must be normal and that every uncountable
closed subspace must be of cardinality ¢ (just cover it with countable open sets
and look at the complement of their union). Hence, if ¢ > w,, such spaces omit
®, (and any uncountable cardinal < .c).

Actually, all the MA examples in [14] have this last property. The reason
is that they are designed so that every w-bounded subspace is compact. Now,
recall [2] that MA implies p = ¢ and consider

THEOREM 7. Let X be a locally compact, locally countable, countably
compact space. If X omits w, , then every w-bounded subspace of X is compact. If
every w-bounded subspace of X is compact, then X omits every uncountable
cardinal < min{p, |X|}.

Proof. Suppose X has an w-bounded noncompact (hence uncountable)
subspace Y. By first countability of X, Y is closed in X. By Lemma 7, Y does
not omit w,, and neither does X

Now, suppose X does not omit some uncountable cardinal x». Let Y be
a closed subspace of X, of cardinality ». Every separable, regular, countably
compact, noncompact space has cardinality > p (see [6]). Hence, if p > %,
every countable subset of Y has compact closure, i.e., Y is w-bounded. But Y is
not compact, because it is uncountable and locally countable.

(') Added in proof. The answer is “yes™ PFA implies that every first countable, countably
compact space is either compact or contains a copy of w,.
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We close with some results which illustrate how the cardinality of X can
make a difference. The first one shows that Examples 1 and 3 have to be of
cardinality > ¢ under MA.

THEOREM 8. Assume MA. If X is locally compact and |X| < ¢, then X does
not omit w,.

Proof. Because of the conditions on X, it is scattered. Suppose X is
locally countable. If X has an w-bounded noncompact subspace, then (as
above) it has one of cardinality w,, which is closed in X. Otherwise (see [14]),
the one-point compactification of X has countable tightness and, by MA, X is
the union of countably many closed discrete subspaces [1], so X does not omit
any cardinals. )

If X is not locally countable, let a be the least ordinal for which there exists
pel(X) such that p has no countable neighborhood, and let U be a compact
neighborhood of p such that

O\{p} = {I‘,(X): B <a}.

Then U\{p} is a locally compact, locally countable scattered space, and if K is
closed in U\{p}, then K U {p} is closed in U, hence in X. By the previous para-
graph, U\{p} does not omit w,, and U is uncountable, so X does not omit w

COROLLARY 5. [MA] If B is an uncountable hereditarily atomic Boolean
algebra of cardinality < c, then B has a homomorphic image of cardinality w,.

PrOBLEM 3 (P 1365). Can the assumption of MA be dropped in Theorem
8? Corollary 5? '

PROBLEM 4 (P 1366). Can we replace w, with any other cardinal < |X]| in
Theorem 8? Corollary 5?

In contrast to Theorem 8 and Corollary 5, MA by itself places no upper
festriction on the size of X for omitting w,. In [14] there is a construction of
“arbitrarily large” locally compact, locally countable, countably compact
spaces, compatible with MA, such that every w-bounded subspace is compact;
by Theorem 7 and p = ¢, such a space omits all uncountable cardinals < ¢.
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