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Let us suppose that f is a real function on the circle group T' and S, is
the nth partial sum of its Fourier series. A basic tool in the study of the
convergence of Fourier series is the fact that, for any é > 0,

sin nt
t

6
Su(z) = f@) = = [ (e + 1)+ Sz = 1) - 2@) 22 dt 4 o(1),
0

uniformly in z, on any interval where f is bounded [5, p. 55]. In this paper
we will make uniform estimates of integrals of this form for continuous f
with é fixed and with é varying with n.

The estimates we supply here have been used by us [4] to furnish an
alternative demonstration of the result of Baernstein and Waterman [1] es-
tablishing the necessary and sufficient condition for the Fourier series of
f o g to converge uniformly for every homeomorphism g of T with itself.
The first estimate of this type was used in the argument by which Goffman
and Waterman [2] solved the analogous problem for everywhere conver-
gence.

Let w(f,6) denote the modulus of continuity of f. If h = h(z,t) is a
function on T2, set

w(8) = @(h, 6) = sup{|h(z,t) - h(z,t')| | |t-¢| < §, z € T}.
In the case
h(z,t) = f(z + 1) + f(z — t) - 2f(2)

it is clear that W(h, §) < 2w(f, ).
We introduce the notation

k
> (k. k,n,z,0) = i'[h(z,2ix/n +6) — h(z,(2i - 1)7/n +0)].

=1
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THEOREM. Let h(z,t) be a function on T? continuous in t uniformly
with respect to z, and with h(z,0) = 0 for all z.

(A) There is 0(z,n) € (0,7/n) such that for any sequence of positive
integers {k,} with @(x/n)log(n/k,) = o(1),

5 .
6fh(:::, t)smtnt dt = % Z(h,kn,n,x,ﬂ(z,n)) + o(1)

uniformly in z.

(B) Let {k,} be an increasing sequence of positive integers. There is a
sequence {€n}, 0 < €, < w/n, such that for any h(z,t) there is 6(z,n) €
(0,7/n — €,) such that

(2ka+1)7/n

[ k224 = -}Z(h, kny, 7, 8(z, 1)) + o(1)

B t
uniformly in z. The choice €, = o[1/n\/logk,] suffices for all h.

Suppose I denotes an interval [a,b]. By f(I) we mean f(b) — f(a).
Applying (A) to the particular h discussed above, we obtain the

COROLLARY. If f is a continuous function on T, then there is 8(z,n) €
(0,m/n — €,) such that for any sequence of positive integers {k,} with

w(f,7/n)log(n/kn) = o(1),
Sal2) = f(2) = = [Z i (i) - Zz-lf(Jm)] +o(1)

i=1
uniformly in z, where
Ini = [z + (2i = D)r/n 4+ 6(z,n),z + 2in/n+ 6(z,n))],
Jni = [z = 2ir/n - 6(z,n),z — (2 - 1) /n - 0(z,n)].

The methods employed in the proofs of these results are related to those
used by Salem in his work on uniform convergence [3].

Writing
smnt ™/n °
fh( = [ ...+ [ ..,
0 x/n
we have
n/n
l |< w(h, 7r/n)f sint dt = o(1)
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as n — oo uniformly in z. Considering the other integral,

5 N  (k+1)x/n )
f — Z f oo + f ;
n/n k=1 k=n/n (N+1)x/n

here N + 1 is an odd integer such that 0 < 6§ — (N + 1)x/n < 2r/n.
Then

5
[ .. | < C||h||/n
(N+1)x/n
uniformly in z, where || - || denotes the sup norm. We have

N (k+D)r/n

. © N .
> [ henta- J Y0 k(e 2+ km)/n) L

k=1 kx/n 0 t+ kx

Ny gk bz, (4 k) /n)
-22(—1)" t+kr

for some ¢ € (0,7). Considering two consecutive terms of this sum,
k odd,

_h(z, @+ kn/n) | h(z, @+ (k+ Dr)/n)

t+ kr t+(k+1)r
_ —h(z, I+ kn)/n) + bz, E+ (k + Dm)/n)
B t+(k+1)x
+h(z,(t + kr)/n) 1 - ]
’ t+(k+1)r tT+kn

and the absolute value of the last term is less than
o((k+ 1)x/n)
k(k+1)r =~
The sum of the absolute values of these terms from k = 1 to q is less than
w((g+ 1)r/n)/m and the sum from ¢ + 1 to N is less than ||h||/(g + 1)~.

Choosing g ~ /n, the sum of all these terms is seen to be o(1) as n — oo
uniformly in z. If in the terms of the form

—h(z,(t + kx)/n) + h(z, (T + (k+ 1)7)/n)
t+(k+)r

we replace the denominators by (k + 1)x, observing that

11/(E+ (k+1)m) = 1/(k+ x| < 1/(k +1)*x,
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we change the sum of these terms by O(&(x/n)). Thus

f h(z t)sinnt —o(1)+ [h(a: ,(T+27)/n) — h(z, (t+1r)/n)
ot

2
r/n
4 Mz, (t+ N7)/n) - h(z,(t+ (N —1)7)/n)
N
N/2
= o(1) 4 — [Z i~1(h(z, (I + 2i7)/n)
i=1
~ h(z,(+(2i = )m)/n))] .
Writing SN2 =%k .+ EkNﬁl ..., we note that
N/2
| Y. | = O(@(r/n) log(n/k,)) = o(1)
ko +1

under our hypotheses, which establishes part (A) of our theorem.
Turning now to part (B), we have

(2ka+1)x/n

x/n 2k, (i+1)7/n
f h(z t)smnt _ f +Z f

0 0

ir/n

and the first integral on the right is o(1) as before. As for the rest, for small
T € (0,7), we have

f sth( 1).h($ ,(t+ir)/n) gt — wjn- . f

i=1 i+ i 0

T="Nxn

2k, :
= (1+cosna) Y _(-1)° Az, 6u + in/n) +R
=1

nb,, + ir
where 0,, € (0,(7 — ,)/n). Then

2k,
|R| < qn—w((2k +1)m/n)) i™' = o(1)
i=1
uniformly in z as n — oo if 9, = o((W((2kn + 1)7/n)logk,)~1/?). The sum
is treated as in the previous case, yielding for the right hand side,
kw

(14 cosny)= Z(2z)‘l[h(z 0n + 2im[n) — h(z,0, + (21 — )7 /n)] + o(1).
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Replacing 1 + cos 7, by 2, we introduce an error bounded by

ko
(1 = cos 1a)5=(x/m) 3 i < Cria(x/n) logkn = o(1)

i=1

if 7, is subject to the condition above. Part (B) then follows with 8(z,n) €
(0,7/n—¢,) where €,, = 1, /n. Note that ,, = o[1//Togk,] or, equivalently,
£n = o[1/n/logk,] suffices for our estimates and is independent of A.
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