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POLYNOMIAL CYCLES IN ALGEBRAIC NUMBER FIELDS
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W. NARKIEWICZ (WROCLAW)

1. Let K be a field, let P be a K-polynomial, and let L be an extension of K.
A sequence x,,...,x,_, of distinct elements of L is called an n-cycle for
P provided P(x,-;)=x, and for i =0, 1, 2, ..., n—2 one has P(x;) = x;+;.

Baker [2] proved in 1964 that every non-constant and non-linear
polynomial with complex coefficients has n-cycles lying in the complex field for
every n # 2 and he described all polynomials without a 2-cycle as those which
are linearly conjugated with x2 — x. (Two functions f, g are linearly conjugated if
there exists a linear polynomial L such that L(f) = g(L).) A similar result holds,
more generally, for entire functions: in [1] Baker proved that every entire
function which is not a constant nor a linear polynomial has cycles of every
length except possibly one.

It follows from [6] that a polynomial with coefficients in an algebraic
number field K can have only a finite number of cycles lying in K, and
Lagrange’s formula makes it clear that one can construct polynomials over
such fields having a given finite number of cycles of prescribed length. If one
restricts attention to monic polynomials with integral coefficients, then the
situation is different and, in fact, we shall prove below (Corollary to Theorem I)
that in this case the cycle lengths are bounded by a constant depending only on
the degree of the field in question but not on the polynomial nor on the field
itself. This is a special case of a more general result which we now state:

Let P be a polynomial with coefficients in K, let A(P) be its leading
coefficient, and denote by S,(P) the set of all prime ideals p of Z,, the ring of
integers of K, for which at least one coefficient of P is not p-integral. Let S,(P)
be the set of all prime ideals p for which 1/4(P) is not p-integral and let

S(P) = $o(P)u §,(P)US,,

where S is the set of all infinite primes of K. Let w(P) be the cardinality of
S(P), and finally let t(P) denote the smallest norm of a prime ideal of Z; not
belonging to S(P). Note that from the Prime Ideal Theorem one obtains the
evaluation

t(P) = O(w(P)logw(P)).

2. THEOREM 1. For all pairs M, w of positive integers there exists a number
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B(M, w) with the property that if K is an algebraic number field of degree M, P is
a K-polynomial with w(P) = w, then every n-cycle of P lying in K satisfies

n < B(M, w),

more precisely,
n< (6.7M +2w(P))x(t(P)),

where n(u) denotes the number of prime ideals of Z ; with norms not exceeding u.

COROLLARY. If P is a monic polynomial with coefficients in Z,, then the
length of its cycles lying in K is bounded by a constant, depending only on the
degree of K, but not on the polynomial nor on K itself. This constant does not
exceed exp(C-2M) with a suitable absolute constant C.

Proof. Let R be the set of all S-integral elements of K. Note that all
coefficients of P lie in R and A(P) is invertible in R. We shall work in R, and
hence in the sequel divisibility, units and associated elements will be considered
in this ring. (Of course, units of R are exactly the S-units of K.)

Let

Xo = P(xn—l)’ Xy = P(xo)s cees Xp-1 = P(xn-Z)

be an n-cycle for P lying in K. Since every x; is a fixpoint of the n-th iterate of
P and R is integrally closed in K, all elements of the cycle lie in R. Without
restricting the generality we may thus assume that x, = G, replacing if
necessary P(x) by P,(x) = P(x+ x,)—x,, which evidently has the same cycle
structure and satisfies S(P,) = S(P). The following lemma gives us some insight
in the structure of cycles of P:

LEMMA 1. The numbers x; (i = 1, 2, ..., n—1) are all divisible (in R) by x,
and if we put t; = x;/x, (i=0, 1, ..., n—1) and t; = tymoan for i = n, then the
following holds:

(i) For any fixed k = 1, 2, ... the differences t;,, —t; are associated in R (i.e.,
differ by a factor which is an S-unit).

(i) For i=0, 1, ..., n—1 the differences t;,,—t; are S-units.

Proof. Let N be the degree of P and let
N
P(x)= ) ax'
i=0

with a;eR. Since x, = P(0) = a, and x, = P(x,), we obtain the divisibility of
x, by x, and the divisibility of the x;’s by x, follows now by recurrence. This
shows that the t;s lie in R.

Now fix a positive integer k. Since

Xitg—X; = P(xisx-1)—P(x;-1),
we get

(i k—1=%i— )I(Xi+x—X;).
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Thus for i=0, 1, 2, ...
(Civx—1—Li-)|(Eirk—12)
holds, and this leads to

= —t)(tr1—t)| --- [Errn—tn) =1,
proving (i). Finally, (ii) results from (i) and the observation that t, —t, = 1.
COROLLARY 1. For k=1, 2, ..., n—1 and all m the number t, divides t,,,.

Proof. By (i) the numbers t,, t,, —¢,,... are associated, and hence they all
are divisible by t,. This immediately implies the assertion.

COROLLARY 2. If (k, n) = 1, then t, is an S-unit. In particular, t,_, is an
S-unit.

Proof. Choose m so that km = 1(modn). According to Corollary 1,
tkltl == 1.

COROLLARY 3. If n is a prime, then t,,...,t,— as well as all differences t;,—t;
G, j=1,2, ..., n—1; i%#j) are S-units.

Proof. The first assertion is a special case of Corollary 2 and the second

results from the observation that due to the part (i) of Lemma 1 the numbers
t;—t; and t;_;—t, = t;—; are associated.

Recall that the Lenstra constant L(A) of a ring A (see [4] and [5]) is
defined as the maximal length of a sequence b,,...,b, of elements of 4 with the
property that all non-zero differences b,—b; are units. If A has a finite
homomorphic image A’, then this constant is finite since it clearly cannot
exceed the cardinality of A’. Hence in our case, with 4 = R, we see that L(R)
does not exceed t(P), defined above as the smallest norm of a prime ideal p of
Z, not belonging to S(P).

LEMMA 2. If n is a prime number, then n < L(R) < t(P).

Proof. The assertion follows from Corollary 3 and the definition of the
Lenstra constant.

LEMMA 3. If n = p® is a prime power, then p°® cannot exceed

6,7M +2w(P)

Proof. If 0 < k < p* and pfk, then Lemma 2 shows that ¢, is an S-unit
and by Lemma 1 (ii) we infer that for every j the difference c;, = t;+;—t; is
associated with t,—t, = t,, hence is an S-unit. If s = p®—p, then evidently for
every k not divisible by p and satisfying 0 < k < p* we have

ty=1ts—x+Cs—ki
and one sees that both summands on the right are S-units, because pts—k.
Since all t’s are distinct, the equation
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has at least ¢(p®) = p®~!(p—1) solutions in S-units. It has been proved in [3]
that this equation can have at most 3-7M*2*® golutions in a field of degree M,
and hence, using Lemma 2, we arrive at

pa < 2(9(}7") < 6.7M+.2w(?)’
as asserted.

Now we can conclude the proof of the theorem. Let p be one of prime
divisors of n and let s = n/p. Considering the s-th iterate P, of the polynomial
P we see that P, has a p-cycle in K, namely

{0, x5, X34+ s X(p- 135}
and since p is prime, we obtain, in view of S(P) = S(P),
p < t(P) = ¢(P).

Let now p“ be the highest power of p dividing n. Then, with s = n/p® the
sequence

0, Xy Xogyer s X(pa—1)s

is a p°-cycle for the s-th iterate of P. It suffices now to apply Lemma 3 to obtain
the first assertion of the theorem, and the asserted bound for B(M, w) follows
now from Lemmas 2 and 3.

The corollary results immediately, since in this case R = Z,, w(P) < M
and t(P) < 2M. '

3. In certain cases one can get a more precise bound for B(M) and in the
case where the only units of K are 1 and —1 (i.e,, either K =Q or K is an
imaginary quadratic field without non-real roots of unity) one gets the best
possible value for it.

THEOREM II. If K is either the field of rationals or a quadratic imaginary
field, not generated bY roots of unity, and P is a monic polynomial whose
coefficients are integers of K, then P cannot have an n-cycle lying in K with
n > 2. On the other hand, there exist such polynomials having 2-cycles in Q.

Proof. Without restricting the generality we may assume that P has an
n-cycle {0, x,,...,x,-} with n > 2 consisting of integers of K and define the ¢’s
as in Lemma 1. Then by that lemma we obtain ¢t;—¢;_, = 1 or —1 for all i and,
utilizing Corollary 2 and n > 2, t,-; = — 1. Now one has to get from ¢, = 1 to
t,—; = —1 by steps equal to 1 or —1 without passing through 0, but this is
clearly impossible and the obtained contradiction shows that n cannot
exceed 2.

The second assertion is a triviality. It suffices to look at the polynomial
P(x) = (x—1)* which has a 2-cycle {0, 1}.
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