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1. Introduction. The Hardy space H?, 0 < p < 1, forms a complete
metric space and not a Banach space. However, Duren et al. [3] construct-
ed a “containing Banach space” B? which had the same continuous
linear functionals as H® and contained H” as a dense subspace. In another
paper [6] Sarason presented a study of the space H?(4) for 1 < p < oo,
consisting of functions analytic on an annulus A4, which generalized the
classical Hardy space H?” of functions analytic on the unit disk. He
demonstrated that H”(A4) was a Banach space which exhibited many of
the fundamental properties of HP.

Each of these situations presented an interesting extension of the
classical H?-theory. In this paper* we consider both of these extensions,
that is, we assume that 0 < p <1 and that the basic domain of ana-
Iy ticity is an annulus. We define a space H?(4), 0 < p < 1, which consists
of functions analytic on an annulus A and which generalizes the Hardy
space H?. We also construct a “containing Banach space” B?(4) and give
a representation of the dual space in terms of functions analytic on A,
continuous on the closure of A, and satisfying certain Lipschitz condi-
tions.

In our notation we assume that 0 < p <1 and that r, is a fixed
positive number less than 1. We let U denote the unit disk, F the “exterior”
disk B = {2: 7y < |2|] < o}, and 4 = UnE. For a function f analytic
on A we often write f = f, 1 f, to indicate the Laurent decomposition
of f chosen 8o that f, is analytic on U and f, is analytic on E with f,(c0) = 0.
We write f(2) = f(ro/?) for a given function f. By H? or H?(U) we mean
the classical Hardy space of functions analytic on U, while H? (F) denotes
the space of functions f, where f is in HP. Furthermore, H”(F) inherits

* These results constitute a part of the author’s Ph. D. thesis written at tho
University of North Carolina at Chapel Hill under the direction of Professors John
A. Pfaltzgraff and Joseph A. Cima.
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the metric space structure of H” through the correspondence f— f. The
subspace of H?(F) consisting of those functions which vanish at infinity
is denoted by H} (Z). The basic theory of Hardy spaces can be found in [2]
or in [4].

2. The F-space H”(A). We define the space HP(A) as the linear
space of functions f analytic on the annulus A such that |f|® has
a harmonic majorant on A. The metric on the space is given by

If —9lEpy = w(Vr,),

where u is the least harmonic majorant of |f— g on A. With this metric,
HP?(A) is an F-space, that is, a linear space with a complete translation
invariant metric under which scalar multiplication is continuous (see [1],
IT. 1.10, p. 51). F-spaces are similar to Banach spaces; in particular,
the Open Mapping Theorem, the Closed Graph Theorem, and the Prin-
ciple of Uniform Boundedness hold for F-spaces. By way of comparison
we note that the Hardy space H? is an F-space and that the standard
metric on H? agrees with the metric defined by evaluation of the least
harmonic majorant of |f—g|® at the origin:
If — gl = S:EII)Mﬁ(f—y,f) = M3(f—g,1) = u(0).

We comment that this notation is not used to suggest a norm, but to
recall the classical notation involving integral means.

The space H? (A) has other characterizations suggested by the classical
situation:

THEOREM 2.1. The following sets are the same:

J = {f: f is analytic on A, supMp(f,r) < oo},

K= {f: f1is analytic on A, |f|® has a harmonic majorant on A},

L = {f: f is analytic on A, f = f,+f, with f, in H® and f, in HY (E)}.

Proof. The inclusion L < J follows from the inequality (a- b)?
<a’+b?fora>0,b>0,and 0 < p < 1.For f = f, +f,in J, fix s between
7, and 1, so that

sup M-z(fn r) < sup Mﬁ(fn )+ sup Mz(fy )+ sup Mz(fzr 7),
0<r<l1 o<r<s 8<r<1 8<r<l
which is finite.

Together with a similar calculation for f,, we have J < L. The
inclusion L = K can be seen by using the inequality above and the
well-known result that |g[® has a harmonic majorant on U for any ¢ in H?.

To prove the inclusion K = L we use a method of Rudin [5]. Thus,
if % is the harmonic majorant of |f|” and s is fixed, 7, < 8 < 1, then |f,|?
L<wu-+aon 8 < 2] <1 for some constant a. But 4 = u,+u,, where u, is
harmonic on U and %, is harmonic on E. Since %, is bounded on |z| > s,
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we conclude that |fy|” <wu%,+b on 8< |2/ <1 for some constant b.
But this is true for all U, since |f,|” is subharmonic on U; hence f, is
in H?(U). Analogously, f, is in HY (X).

Recall next that the linear space direct sum of two F-spaces X and ¥,
denoted by X @Y, is again an F-space when given the metric defined as
the sum of the coordinate metrics (see [1], p. 89). Recall also that two
metric spaces are said to be equivalent if there is a one-to-one linear map-
ping T of one onto the other such that T and 7! are continuous. Similar
statements are well known for Banach spaces. That H?(A4) can be viewed
a8 a direct sum proves useful in establishing some basic properties.

THEOREM 2.2. The F-spaces H” (A) and H*(U) @ HY (E) are equivalent.

Furthermore, if f = fi+f, i8 in HP(A), then, for K = (L+Vr)/(1—Vr,),

If 1oy < KLfilEe@) + Il

Proof. Applying the inequality (a-+b)* < a’4b® to |f|® we find
that |f|® < u,+ %,, where u, is the least harmonic majorant of |f;|” on U,
and u, is the least harmonic majorant of |f,|” on E. But u, is the Poisson
integral of |f,(¢")|P. By letting

9(2) = (2+Vr) /(L —2Vry),
we can write
4 (Vo) = (9(0)) < %, (0) [(1+Vro) (L — Vo).

Similar considerations on %, and #, lead to the inequality
Uy (Vrg) < wg(00) [(1+Vr0) [(1 = Vo)1,

and since [|f||%n., is dominated by the sum w,(Vr))+u,(V7r,), the in-
equality in the theorem follows. Thus far we have shown that the map
(f1y f2) = f is continuous. The inverse map is continuous by the Open
Mapping Theorem, and the two spaces are equivalent.

As a result of this last theorem we are able to present several im-
mediate properties of the space H”(A) related to the classical theory of
Hardy spaces.

COROLLARY 2.1. Functions in HP(A) have non-tangential limits at
almost every point of the boundary of A.

COROLLARY 2.2." Evaluation at a point in A i8 & continuous linear
functional on HP(A).

Indeed, for some constant C(p) and r = |z|,

1f(2)] < O(D) If | gpaymax [(1 —r) 7P, (r —r,)~2P],

COROLLARY 2.3. Evaluation of a Laurent coefficient is a conlinuous
linear functional on HP(A).
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COROLLARY 2.4. For f in HP(A) and [f,(2) = fi(r2)+fa(z/r) with
0<r<il,

hm "fr —f”H'p(A)

3. The Banach space BP(A). Duren et al. in [3] defined B? to be
the linear space of all functions f analytic on U, satisfying

1
Iflle = [ (L—rYP=2M,(f, r)dr < oo.
0

They were able to prove the following basic properties of B?:
THEOREM 3.1. The space B? i a Banach space. Furthermore,
(a) 1f(2)] < C(p)IIf (L —7)"Y" for fin B, and f(2) = o[(1—r)"""];
(b) for each f in BP?,

lim||f, —fllpe= 0, where f,(2) = f(rz) for r <1;

r—1

(c) H? is dense in B?;
(@) Ifllgp < C(D)Ifligp for each f in H® and for some constant C(p).

The Banach space B?(E) and its subspace Bf (E) are defined as expect-
ed by using the correspondence f— f. Alternately, the norm is given by

Iflize = [ (r—7a)®2(ro[r®) My (f, v)dlr.
o
In defining the space B*(A) we utilize this same approach of weight-
ing functions to control the growth of functions near the boundary
of the annulus A. Thus, if we let

p(r) = 1—r)""2 forr<1
and
p(r) = (r—r))P72(r,[r3) for r,<r < oo,

we can define B?(A) to be the space of functions analytic on the annulus 4
with the norm

1
Ifllzpay = fqanl(f, r)dr < oo.
o

We first point out that functions in B?(4) can be decomposed into
the sum of two functions from simpler spaces:

THEOREM 3.2. A function f is in BP(A) if and only if f = fi+fa,
where f, 18 in BP(U) and f, ts in BJ(E).
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Proof. Let f, be in B?(U), let f, be in B} (E), and r, < 8 < 1. Then
f = fi+7f, is analytic on the annulus 4, and

1 8 1
[ovM,(f, r)ar < [opM,(fi, r)dr+ [ @pMy(fi,r)dr+

To o

+ [ oMy (fas VVdr+ [ @y My(fy, r)dr.

7o

Since each of these integrals is finite, the function f is in BP(4).
Conversely, if f = f,+f, is in BP(A), then

1 8 1 1
[ oMy (fy, r)dr < [ @M, (fy, r)dr+ [ @M, (f, r)dr+ [ oMy (fy, r)dr.
0 0 8 8

The first and third integrals are easily seen to be finite. The second
is also finite, since if we let ¢ = inf[y(r): 8 < r < 1], then

1
[ oM, (f, dr < g Iflzpa)-
L]

In a similar manner it can be shown that f, is in B} (E).
COROLLARY 3.1. H?(A) < B?(A).

In order to show that BP(4) forms a Banach space, we need the
following result:

THEOREM 3.3. If F i8 a bounded set in BP(A), then the functions in F
are uniformly bounded on compact subsets of A.

Proof. In our notation, A (r, 8) = {#: r < |¢| < 8} for any appropriate
choice of » and s. Without loss of generality, we assume that functions
in F are bounded in norm by 1, and consider the closed subannulus 4 (», r'’)
a8 a typical compact set in 4. In connection with A(r’,r"') we define
two other subannuli 4 (s’, 8'’) and 4 (¢, '), so that we have three concentric
disjoint closed subannuli of A. To do this choose 7, < 8’ < 8"’ <r' < r”
<t<t'<Ll

Now, for each f in F' we may choose a value ¢ between ¢’ and ¢”, and
a value § between s’ and 8", so that M,(f,?) < M,(f,r) for all r in the
interval [t',¢'] and M,(f,8)<< M,(f,r) for all r in the interval [s’, s"'].
Since the norm of f is bounded by 1 in our hypothesis, we note that

t" .II

1> My(f,0) [ opdr and 1> My(f,4) [ oydr.
¥ 8’



124 D. M. BOYD

Now let 2 = ré* be a point in A (v, r") and use the Cauchy repre-
gentation of f(z) on the clrcles of radii { and §. We have
T fde™)ie oL F f(3e™) e
e —rett 27 86" —ret
< My(f, D) (E—r)"' + M, (f, 8)(r—8)7",
Together with what we know of { and s, we can now write

t"

s@n<e—r) [ evar]” + [0 —e") f Wdr]

f(@)l = dw|

which is a constant dependent on the compact set A (+', ') and not on
the choice of the function f in F. Hence, the family F is uniformly
bounded on A(r, r).

THEOREM 3.4. The space BP(A) is a Banach space, and convergence
in the norm implies uniform convergence on compact sets of A.

Proof. Let (f,) be a Cauchy sequence in B?(4). Since B?(4)is contain-
ed in the L'-space of functions on 4 under the measure (1/2 )@ (r)y(r)drdw,
which is known to be complete, we have f,— f in L' mean for some f
in L'. This implies that some subsequence converges pointwise a.e. to f.
On the other hand, this subsequence is bounded in the B?(A4)-norm;
therefore, by the last theorem, it is a normal family. Thus, there is a sub-
sequence (f,,), which converges uniformly on compact sets to some func-
tion g, analytic on the annulus A. Therefore, f and g agree a.e. Since ¢
is analytic and in the L'-space, we know that g is in BP(A), and that
fn—> g in the BP(A)-norm. We have also shown in this argument that
norm convergence of (f,) to g implies uniform convergence on compact
subsets of 4.

THEOREM 3.5. The Banach spaces BP(A) and BP(U)DBJ(E) are
equivalent.

Proof. It suffices to show that (f,, f.) - f is a continuous map from
B?(U)®B?(F) to B?(A). Since the map is one-to-one, linear, and onto, the
Open Mapping Theorem implies the continuity of the inverse. Further-
more, the question of continuity can be reduced to the inequalities

(1) Ifillsray < Ellfillzpry  and  [Ifellerg < k' Ifallsog -

These inequalities are clearly true for p > 1/2, since ¢ and y are
bounded on the interval (r,, 1). Thus, we need to consider the case p < 1/2,
where ¢ is increasing and y is decreasing on their respective domains.

We now turn our attention to f, and assume that ||f,ligr ) = 1.
The general case for arbitrary f, follows by applying this special case
to the function divided by its norm. Since ¢(r)M,(f;,r) is increasing



with r, we have

1> [opM,(f,,r)dr>@(R)M,(fy, B) [var
R
and "
¢(B) M, (fy, B) <[ [yar]™
R

for any choice of R between 7, and 1. Furthermore,

R 1 R
f¢wM1(f1,r)dr<[fcpd ]—l f pdr.
4] R o

Now fix R so that

R 1 1 1 3 1
fwdr =-4-f1pdr and fzpdr =7 ftpdf.
o 7o R To

Thus
£ 1
J oM (fiy ndr <

To
We now can compute

Wfillseey = [@My(fi, r)dr > [p(B)I™ [ @uMy(fy, r)dr
R R

) 1\ 1
> [y (B)] '(1—3) =>0.

Hence ||f1llgr) < &l f1llzp)-
The inequality for f, in (1) follows from the above argument if we

consider the function f,. Alternately, the proof could be modified by
interchanging the roles of ¢ and vy, using the fact that M,(f,,r) de-
creases with 7.

We are now in a position to gain information from the results of
Duren et al. [3] on the space B? as stated in Theorem 3.1.

COROLLARY 3.2. Let f be in BP(A). Then

(a) for some C(p),

1f () < O(P) I | gogmax [(L—r)""2, (r—1ry)~ 7],
and f(2) = o[max[(L—r)""2, (r—1r,)""?]];
(b) for r <1,

lim|f,—fll -0, where f,.(2) = fi(re)+fa(2/r);

r-»1
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(c) H?(A) 8 dense tn BP(A);
(d) Iflzpay < C(P)Ifllupay for some constant C(p).

4. The dual space of H?(A) and B”(4). In this section we derive
a representation of the dual space H?(A)* in terms of functions analytic
on A, continuous on A4, and satisfying a certain Lipschitz condition.
Analogously to the study in [3] this space is the dual space of B*(A4)
as well as of H?(A). We first introduce the spaces of analytic functions
that are useful in this representation.

If F(t) is a complex-valued function defined on the real line, then
the modulus of continuity of F is the function

o(h; F) = sup {|F(t)—F(s)]: [t—s| < k).

Furthermore, the function F is said to belong to the Lipschitz class 4,
O0<e<1)if
w(h; F) = 0[h*] a8 h—>0.

A continuous function F is said to belong to the class A4, if
[B(t+h)—2F(t)+F(t—h) = O[h] for all ¢t as h—0.

For any a < 1, we have 4, < A, c 4,. See [2], p. 71, for a more
thorough discussion.

For functions f analytic on the annulus A, we say that f is in A,
(or in A,) if f is continuous on the closed annulus 4 and both boundary
functions f(r,¢*) and f(e¥) are in the class 4, (or in A,).

We define A7(A4), for non-negative integer n and 0 < a < 1 to be
the space of functions g analytic on the annulus 4 with g¢,g¢’, g", ..., ¢
all analytic on the annulus A, continuous on 4, and with g® in the class 4,.
We define A%(4) in a similar way using the class 4,. These spaces gener-
alize those utilized in [3]for the study of functionals on the Hardy space H?.
In fact, we may refer to the spaces in [3] as to A%(U) and A%(U), and
note that A%(EF) and A%(F) may also be suitably defined. Of course, it
is possible to use the Laurent decomposition to write a function ¢ in
A%(A)as g = g+ ¢gs, where g, is in A%(U) and g, is in A%(E).

THEOREM 4.1. With any @ in HP(A)* there is associated & unique
function g, analytic on A and continuous on A, such that

2r
.1 _
(m¢m=mgﬁﬁwmﬂmwm—fﬂ Y otreemas
r-1— 4T 0 r—»l“z
for any f =f,+f. in H?(A). If (n+1)"'<p<n~! for some positive
integer n, then g is in AV '(A), where a = 1/p—n. If p = (n+1)"" for
some positive integer n, then g is in A3 (4).
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Conversely, if (n+1)"'<p<n and g is in A" '(A), where a =
= 1/p —n, then the limit in (2) ewists for all f in H?(A) and defines a con-
tinuous linear functional on H?(A). If p = (n+1)"! and g is tn A3 (4A),
then the limit in (2) exists for all f in HP(A) and defines a continuous func-
tional on HP(A).

Proof. Let @ be in H?(A)* and let
f) = D',

be in the space H?(A). Put
b, = D(=") for n =0,1,2,...,
b_, =r"d(z™") forn =1,2,3,...

This choice enables us to construct analytic functions

9:(?) = Z“bnzn and g2(2) = Zoo:b-nz—n

n=0 n=1

on U and on E, respectively. Next consider the function f,(2) = f,(rz) +
+ fa(z/r) which is the uniform limit of its partial sums on the closure of A.
By Corollary 3.2 we know that f, — f in the H? (4)-metric. Therefore, by the
continuity of 9,

(3) &(f) = im &(f,) = lim [Z.o a,b, 7"+ f‘a_nb_“rgzﬂr"].
r—-1— n=0 n=1

r—>1—

If we consider f, and f, separately, then we can write

O(f) =lim Y a,b," and  O(fy) =lm 3 (a_,157™) (b_nrs ™).
r—1- n=0 r—>1— n=1

Note that (a_,r;") and (b_,r;") are the Taylor coefficients of f,
and §,, which are amalytic in U, f, in H?(U). Therefore, from these last
representations and from Theorem 1 of [3], which characterizes the con-
tinuous linear functionals on the space H® as the limits of such sums,
we know that g, and §, are in the class A* Y(U) if (n+1)"'<p < n™?
and a = 1/p—n. Thus, the function ¢ = g, +g¢, is in the class A?"'(4).
A similar argument follows if p = (n+ 1), showing that g is in A3'(4).

In addition, we see that this argument establishes the existence of
boundary values for g¢,,¢g,, and g. Therefore, it is possible to rewrite
the expansion in (3) as the integral expression in (2), noting that Cauchy’s
Theorem assures us that the integrals involving f,(re*)g,(¢”*) and
Ja(roe™2[r) g (roe %) are zero.
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Conversely, suppose that ¢ is in A" !(4) with (n+1)"'<p <n™!
and a = 1/p —n. By Theorem 1 of [3], we know that

r—1

1 2r 4
Z,(f) = lm_— [ fi(re*)g,(6")ds,
@
I 1 x ~
Fy(f) = lim o [ fa(re®)a(e™)ds

both exist and define continuous linear functionals on H”. If we put
Y(f) = Vy(fi) +¥.:(f.), then it is easy to check that ¥ determines
a continuous linear functional on the space H?(A). The argument can be
repeated with » in place of the subscript a.

As an example of this representation, let ¢ be a point in 4, and set

hi(2) = (1=t = 32"

ha(2) = ro(te—re) ! = Dt rmam
n=1

Then the function h = hy+h, is analytic on the closed annulus 4,
and A is in all of the Lipschitz classes. Furthérmore, if @ is the contin-
uous linear functional induced by &, and f is any function in H?(4),
then it can be checked from (3) that @(f) = f(f). In other words, h is
the function that induces the functional which is evaluation at the point &.

In another use of this representation and of this same function &,
let ¥ be a functional induced by some function g. Then by (3) it is easily
verified that ¥ (k) = ¢(t). In this way, h provides a means of determining
the function g that induces a given linear functional ¥. For example,
if ¥ is evaluation of the n-th Laurent coefficient, then

" if » is non-negative,
gy =¥ () = . .. . :
7o "1 if n is negative.

THEOREM 4.2. The spaces BP(A) and H?(A) have the same continuous
linear functionals; furthermore, Theorem 4.1 remains valid if HP(A) 8
replaced by B?(A).

Proof. Let @ be in B?(4)* with

g(2) = D by2"
defined as in the proof of Theorem 4.1. From Corollary 3.2 (d) it follows

that @ is also a continuous linear functional on H?(A). Thus, g is in the prop-
er Lipschitz class. Again set f,(2) = f,(r2) 4 fa(2/r) for any fin B?(A). Since
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f,— f in the B?(A)-norm by Corollary 3.2 (b), the representations in (3)
and in (2) hold just as in the proof of Theorem 4.1.

Conversely, if ¢ is in the proper Lipschitz class, we know from The-
orem 7 of [3] that the two equations in (4) both exist and define a linear
functional on BP. Since B?(A) is equivalent to B?(U)®B}(E), Y(f) =
= ¥,(f.) + P:(f,) defines a continuous linear functional on BP(A).
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