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HOMOGENEITY OF G IF G IS A TOPOLOGICAL GROUP
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ERIC K. vAN DOUWEN (ATHENS, OHIO)

1. Introduction. The main purpose of this paper is to improve a result
of Comfort and Ross [4]. Along the way we get a useful criterion for non-
-homogeneity. In the sequel we assume that all spaces are completely regular.

THEOREM 1. The following conditions on a topological group G are
equivalent:

(a) G is pseudocompact;

(b) G can be given the structure of a topological group in such a way
that G is canonically embedded as a subgroup;

(c) PG can be given the structure of a topological group;

(d) BG is homogeneous;

(e) BG s dyadic (1);

(f) BG is the continuous image of a supercompact (*) Hausdorff space.

We first give that part of the proof which follows immediately from
results in the literature. Glicksberg [12] noted without proof that (b) implies
(a). Comfort and Ross [4] proved that (a) and (b) are equivalent — an
elementary proof was recently given by de Vries [16]. Implications (b) = (¢)
and (¢) = (d) are trivial.

It is a deep result of Kuz’minov [15] that every compact topological
group is dyadic. This proves implication (¢) = (e), while (e) = (f) is trivial.
Engelking and Pelezyniski [8] proved that if fX is dyadic, then X is pseu-
docompact. This was recently improved by the author and van Mill [7]
who showed that if pX is the continuous image of a supercompact Haus-
dorff space, then X is pseudocompact (see [1] for further improvements).
This proves (f) = (a) (3).

() A space is dyadic if it is the continuous image of {-—1, 1}* for some x.

(3) A space is supercompact if it has a subbase & such that every cover by elements
of & has a subcover by at most 2 elements. { —1, 1}* is supercompact for all x, since
any product of supercompact spaces is supercompact.

(3) Implications (¢) = (e) = (a) are proved in [16], 4.6.4 (which considers
(b) rather than (c¢)). The author is indebted to Wis Comfort for suggesting to include (e).
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It remains to prove that (d) implies (a). This is true even if @ is not
a topological group. We will prove a criterion for non-homogeneity which
implies the following

THEOREM 2. The space X is not homogeneous if one of the following
conditions 8 satisfied:

(a) X = BY for some mon-pseudocompact Y ;

(b) X = BY—Y for some non-pseudocompact Y ;

(¢) every countable relatively discrete subset of X is C*-embedded and
X has an infinite compact subset.

Condition (a) of this theorem is new (%), (b) is due to Frolik [9], and
(c) follows from [10] and [14]. Our method of proof deals basically with
condition (c¢). Although this method has appeared in [2], it seems to be
worthwhile to give a fairly detailed proof of Theorem 2; our proof is
different in spirit from that of [2].

The fact that implication (d) = (a) from Theorem 1 is true even if
@ is not a topological group suggests the question of whether X is homo-
geneous if X is a pseudocompact homogeneous space. In Section 5 we
answer this question in the negative by constructing a counterexample.

We use w for the space of non-negative integers and also for the first
infinite cardinal. Let f be a function, and A a set. Then f~ A4 and f<A denote
the image and the preimage, respectively, of A under f. If f is a bijection,
then f~! is the inverse function. If f: X — Y is a function, then pgf:
pX — BY is its Stone extension.

2. The criterion. The proof of Theorem 2 (b) and (¢) suggests the
following concept:

Definition. A subset 8 of a space X is called shy if for all A = S
and for every countable, discrete, C*-embedded B = X the condition
ANB = AnB =@ implies ANB = @.

We then have the following criterion for non-homogeneity:

LeMMA 1. A space i8 non-homogeneous if it has a countably infinite,
discrete, C*-embedded shy subset whose closure is compact.

It is clear that Theorem 2 (¢) follows from Lemma 1. To see that
Theorem 2 (a) and (b) also follow from Lemma 1, it clearly suffices to
prove the following

LeMMA 2. If X is not pseudocompact, then X has a countably in-
finite, discrete, C*-embedded shy subset S such that S = fX — X.

We prove Lemmas 1 and 2 in Sections 3 and 4, respectively.

An immediate corollary to Lemma 1 is that every infinite compact
F-space is non-homogeneous. Another corollary is that the set po(R)

(4) It seems that this has not been considered before, probably because it is
trivial for spaces X like w, Q and R.
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of remote points of SR is non-homogeneous. Indeed, it is shown in [6]
that o(R) is an infinite space in which every countable subset has compact
closure; moreover, every countable subset of o(R) is (*-embedded since
¢(R) < SR — R. This justifies a claim in [6].

3. Shyness and non-homogeneity. In this section we prove Lemma 1.

Let X be a space, let « € X, and let {e,>,., be a sequence of points
of X with e, 7 = for n € w. Then one can define the way {e,>,., clusters
at z (cf. [5]) to be the set

W ={ac w: xe{e,: nea}}.

If {¢,: n € 0} is a discrete C*-embedded subset of X and e, # e,
whenever m # n, and z € {¢,: » € 0w}~ , then, clearly, W is a free ultra-
filter on w, i.e. it is a point of fw — w. So, if we put

w(x, X) = {p € fo — w: there is an embedding e¢: fow > X
with e(p) = # and ¢~ w is shy},

then w(z, X) can be thought of as the set of all possible ways shy discrete
C*-embedded sequences with compact closures cluster at . This is
of course closely related to the types of Frolik [9], p. 707.

It is clear that w(x, X) = w(y, X) whenever there is a homeomor-
phism of X onto itself which maps x onto y. So

(1) X is not homogeneous if there are =,y e X with w(z, X) # w(y, X).

If the condition of (1) is satisfied, then there is an embedding ¢:fow - X

with ¢”w shy, and so
U{w(z, X): 2 € X} = fo—o.

Consequently,

LeMMA 3. If there is an v € X such that @+ w(x, X)# fw— w, then
X is mot homogeneous. '

Note that Lemma 3 and condition (1) are equally strong; however,
Lemma 3 is more manageable.

Lemma 1 is an immediate consequence of Lemma 3 and of the fol-
lowing

LeMMA 4. w(z, X) # Bow— o for all X and for all z € X.

For the proof of this lemma we need some facts about fw. There are
two useful preorders on fw:

the Rudin-Frolik preorder [ defined by p C ¢ if p € w(q, fw) or,
equivalently, if there is an embedding e: fw — fw with e(p) = ¢;

the Rudin-Keisler preorder < defined by p < ¢ if there is a map
f: o > o with 8f(p) = ¢.

The following lemma summarizes relevant information about these
preorders.
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LeMMA 5. Let p, q,r € fo.

(a) If p C gq, then p < q ([3], 16.12 (a)).

(b) p < q and g < p iff there is a homeomorphism from fw onto itself
which maps p onto q ([3], 9.3).

(¢) Ifp Crand q C r,thenp C qor g C p ([3], 16.16).

(d) There are p, q € fpo—w such that p non < ¢ and gnon < p [14].

(e) {pepo—ow: p< ¢} <2® for all gepfo—ow ([3], p. 206, (b)).

Part (a) is easy to prove, and part (d) is a highly non-trivial result
of Kunen [14]. The following lemma, which generalizes part (c), implies
Lemma 4 because of (a) and (d) of Lemma 5, and this will complete the
proof of Lemma 1.

LeEMMA 6. Let x€ X. Then pL q or ¢ C p for all p, qew(r, X).

Before we proceed to the proof we observe the following

FACT. If p € fo—w and p € A for some A < w, then there is a bijection
b: w - A such that Bb(p) = p.

Indeed, let A, and 4, be infinite disjoint subsets of A with 4,UA4,
= A. Then there is an I € {4,, 4,} with p € I. Let b: w — A be any bi-
jection such that b(z) = 4 for¢ e I.

We now are ready for the proof of Lemma 6.

Let f,g: po - X be embeddings with

(2)  f(p) =9(q) ==,
for which f~w and ¢”w are shy. Note that
(3) every subset of f"w or of g”w is discrete and C*-embedded.

Put

F=f"o—gfo and G =g ow—-ffo.

Then FNG = FNG = @. Hence, by (3), FNG =@ since g~ w is
a shy subset of X. We may assume therefore that ¢ F (and will conclude
p Cq). Let

K =f"ong fw.

Since # € f”fw = (f"w)”, our assumption implies that x e K. Since
f: Bo - fBw is a homeomorphism, it follows from the Fact that there
is a bijection b: w — K such that pb(p) = f(p) = «. Let us denote b
by h. Then A is a homeomorphism, and A~ fw < g~fw since b v = K <
c g”Bw. As h(p) = x = g(q), it follows that (¢97'|h” Bw)o h is an embed-
ding of Bw into few which maps p onto ¢, i.e. p C g.

This completes the proof of Lemma 6, and hence of Lemma 1.

Remark. Instead of our w(z, X) one can define 7(z, X) < fw— o by

t(r, X) = {p € fw — w: there is an embedding ¢: fw - X
with e(p) = «}.



HOMOGENEITY OF pG 197

Frolik [9] (essentially) considers z in his proof that Y* is not homo-
geneous if Y is not pseudocompact. Let us indicate why we used w rather
than 7, and what makes that v could be used for Y*.

In the proof of Lemma 4 we used the shyness, implicit in the
definition of w, in an essential way (in the proof that FNG = @). Indeed,
Lemma 4 is false for 7. For if X is the produet of 2“ discrete 2-point spaces,
then X is a homogeneous space, which includes a copy of fw, so r(z, X)
= fw—w (but w(z, X) = @) for all z € X. '

Now, let ¥ be non-pseudocompact. We prove that ¥Y* is not homo-
geneous by observing that Lemma 3 holds for = instead of w. Since ¥*
includes a copy of fw (cf. Section 4), it suffices to show that z(z, ¥*)
# Bw — w for some x € Y* (note the difference with Lemma 4). There is
an embedding g: fw — Y with ¢g”w, a C-embedded subset of Y, and
(hence) g~ (fw —w) = Y*. Let ¢ € fw—w and let x = g(q). Suppose that
perv(z, Y'). Then = = f(p) for some embedding f: fw — Y*. Since
g~ o is shy in BY, being C-embedded in Y (see [9], p. 706), the same argu-
ment a8 above shows that p C ¢. It follows from (a) and (e) of Lemma 5
that |t(z, Y*)| <2“ whence 7(x, Y*) # fo—w, as required. This is,
of course, Frolik’s argument [9].

Since w(z, X) < 7(x, Y) for all X and = € X, this suggests the ques-
tion of whether we can improve Lemma 4, and have |w(x, X)| < 2 for
all #z € X (or for at least one x € X). This appears difficult since we do not
get an upper bound for w(x, X) for free, as in the argument just indicated.
This question is of interest, since a positive answer would eliminate the
need for (d) of Lemma 5. (P 1070)

4. pX for non-pseudocompact X. Here we prove Lemma 2.

Let ~ be the closure operator in X.

Since X is not pseudocompact, there is a non-empty closed G;-subset
G of pX which misses X. Let ¥ = X —@G. Then X < Y < X, whence
Y = BX.

Y is o-compact, hence realcompact, but not compact. Consequently,
IBY — Y| = 2*° (see [11], 9.12). Thus we can find a countably infinite,
discrete subset S of Y with § < G = Y —Y. We claim that § is as
required. Clearly, S < @ < X — X.

We first show that § is C*-embedded. Clearly, § is closed in YuUS.
But YUS is normal, being ¢-compact, hence 8 is ¢*-embedded in g(¥Y US)
=Y = BX. :

We next show that 8 is a shy subset of fX. Let A < 8, and let B
be any countable subset of X such that ANB = ANB = @. Then A
and B have disjoint closures in Yu4 UB. But YUA UB is normal, being
c-compact, 80 A and B have disjoint closures in §(YUAUB) = Y = fX.

5. Example. There is a pseudocompact homogeneous space, no compac-
tification of which 18 homogeneous.
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Give the countable ordinals w, the usual topology, let K be the Cantor
discontinuum 2%, and let L = K X w,. Define a family # of compact open
subsets of L by

= {K X[0, a]: a € w,},
and note that
(4) for every countable C = L there is a B € # with C < B.

This clearly implies that L is pseudocompact, in fact — even count-
ably compact. It follows also that L is homogeneous. Indeed, just observe
that every member of # is clopen in L and, being a compact zero-dimen-
sional metrizable space without isolated points, is homeomorphic to K
(see [13]).

Finally, let bL be any compactification of L. By (4), no sequence in
L converges to a point of bL —L. Hence no point of bL — L is a countable
neighborhood base. But, clearly, every point of £ has a countable neigh-
borhood base. Hence bL is not homogeneous.

One can also consider w, XK, equipped with the topology which
induces the lexicographic order on w, X K.

6. Questions. 1. If X is a compact topological group, is X super-
compact? (Added in proof: Answered affirmatively by Mills [17].)

As noted in the Introduction, compact topological groups are dyadic,
hence they are the continuous image of a supercompact Hausdorff space.
It is unknown if a dyadic space must be supescompact [ 7], but a continuous
Hausdorff image of a supercompact Hausdorff space need not be supercom-
pact [18].

2.1f Y is as in Theorem 2, is it true that no power of Y is homoge-
neous? (P 1071)

Partial answers are given in [5], where it is shown, among others,
that no power of fw or of fw —w is homogeneous.
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