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A GAME OF FAIR DIVISION IN THE NORMAL FORM

BY

JERZY LEGUT (WROCLAW)

1. Introduction. In this paper we show that the classical game of fair
division can be represented by some game in the normal (strategic) form. We
prove the existence of the Nash equilibrium point of the game in pure
strategies which coincides with the optimal partition in the sense of Urba-
nik [5].

Let X be an object (e.g, a cake) which has to be divided among n
participants (players). The players of the set I are numbered from 1 to n. An
ordered partition P = (A4,, A,, ..., A,) of X is considered to be a fair division
if each player i receiving the part A4, is “satisfied”.

A simple and well-known method of the performing a fair division for
two players is “for one to cut, the other to choose”. In this method each
person can ensure himself that he receives at least a half of the cake
according to his own evaluation, independently of what the other has done.

H. Steinhaus in 1944 (cf. Knaster [3]) asked whether a fair procedure
could be found for dividing a cake among n participants for n > 2. He found
a solution for n = 3, and S. Banach and B. Knaster (cf. [3]) showed that the
solution for n = 2 can be extended to arbitrary n. Their division of the cake
into n pieces is such that the i-th piece is worth at least (1/n)-th of the cake
according to the individual measure of the i-th player.

The problem of fair division is convenient to be considered in the language
of measure theory.

Let (X, #,) be a measurable space, where X is the set which has to be
divided among n players, and %y is a g-algebra of subsets of X. Let 2 be the
set of all ordered measurable partitions P =(A4,, 4,, ..., 4,) of X and let y;,
iel, be non-atomic probability measures defined on (X, #,). Each p
represents the individual evaluation of the sets from %y.

With every partition P =(4,, A,,..., A)€eP of X we associate the
(m x n)-matrix of real numbers M (P) = [u;(4)], i,j =1, 2, ..., n. Dvoretzky
et al. [2] proved that M (<) (the range of the matrix-valued function M) is

convex and compact in R” (cf. also [1]).
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Suppose that a,, a,, ..., @, are non-negative numbers with

z a.' = l.
i=1

We are interested in giving to each person i a part 4; of X such that y;(A4,)
= o;. Dubins and Spanier [1] derived from the result of Dvoretzky et al. [2]
the existence of the fair division, even with a stronger property:

THEOREM 1. There exists a measurable partition
P =(Al’ Az, ey An)

of X such that p;(A) =a; for alli,j=1,2,...,n.

Urbanik [5], using other methods, obtained the same result earlier. He
also proved that if at least two of the measures y;, i €l, are different, then
there exists a partition P = (A,, A,, ..., A,) such that y(A4;) > 1/n (We put
here o; = 1/n, i€l) Moreover, he showed the existence of an optimal fair
division

P* = (A}, A%, ..., AY)
for which

min p;(A¥) = max[ min y (E)],

1<j<n 1<i<n

where the maximum is taken over all measurable partitions
P=(E,E,,...,E)e?

(The maximum really exists, since M (%) is compact.)’

It is impossible to get the optimal fair division in the pragmatic method
of B. Knaster and S. Banach when the players choose their optimal strat-
egies. In this paper we construct a game in the normal form which is in a
way equivalent to the classical game of fair division. To any vector of pure
strategies of the players in the game in the normal form there corresponds
some division and, conversely, to any division there corresponds some vector
of pure strategies.

2. A game of fair division in the normal form. Let i: 2 — R" denote the
division vector-valued function such that

B(P) = (u1(4y), p2(42), ..., un(4,), PeDP.
The convexity and compactness of the range M (%) imply that the pay-off set
(9 in the game of fair division is also convex and compact.

DeFINITION (cf. [4]). A convex set K — R" has dimension k if, for some
x €K, K—x generates a linear manifold of dimension k.
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It is easy to verify that if there exist two measures y;, u;, i,j€l, and a
set A €#y such that 0 < y;(A4) < p;(A4), then the set ji(#) has dimension n. If
Uy = HUy =...= U, then the set u(%) has dimension n—1.

THEOREM 2. Assume that the pay-off set (%) in the game of fair division
has dimension n. Then there exists a game

G =(Sl’ 827 [ERX) Smfl’fl’ ’f'l)

(where S; is the set of strategies and f; is the pay-off function for the i-th player)
with the following properties:

(1) for any vector of pure strategies (s, Sa, ..., S,) €S; XS; ... xS, there
is a partition Pe€ P such that

B(P) = (f1(51), f2(52); -- -, fa(sw)

and, conversely,
(i) for any partition Pe€P there is a vector of pure strategies
(51, S25 ..., S €Sy xS, x... xS, such that

(fl (sl)’fZ (82), 9f;|(sn)) = ﬁ(P)

Moreover, the sets of strategies S; are compact and the pay-off functions f; are
continuous, i =1, 2, ..., n.
Proof. Our proof is based on the following well-known theorem: any

two compact convex sets of the same dimension are homeomorphic (cf. [4]).
We put §;=[0,1],i=1,2,...,n Let

1 1 n-1

and
B = ji(P Ly
_” n )

where 1=(1, 1, ..., 1) eR". Clearly, the origin 0 is an interior point of the set
A N B. Define a map g: A =B by

Pa() x, x€eAcR"
ps(x)

where p, and pg are the Minkowski functionals for the sets 4 and B,
respectively. The map g is a homeomorphism. We put

g(x) =

1 1 "
f(s)=g (s—; 1)+;1, se[0, 17"
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It is easy to see that f: [0, 1]" — ii(%) and that f is also a homeomorphism.
Now we put f; =m;f, where =; is the projection of R" onto the i-th
coordinate. The game

G=(0,1],....,[0, 11, fi, fos ---» f)
satisfies the properties stated in the assertion of Theorem 2.

THeoreM 3. Let G = ([0, 1], ..., [0, 1], fi, />, ..., f,) be the game of fair
division in the normal form in the sense of Theorem 2. Then the vector

1=(1,1,...,1)€eR"

is the Nash equilibrium point of the game G.
Proof. We have to prove that, for any pure strategy s; €[0, 1],

(1) fid, 1, .., s, 1,..., )< fi(]) for all iel.
Suppose that there exist i €l and s; €[0, 1) such that (1) is not satisfied. Let
e;=(0,0,...,0,1,0,...,0), jel, be the basis in R". We put

s=(1,1,.., 1,5, 1,..,1) =) ej+es;.

J#i
Clearly, e;eui(9), jel. We have
n—1

PA( 1)

A\ n n—1 1
@ £O > i) =—— K+,

Ps " 1
where

P (""1 1)=inf{t: t>0, 1(5"—1 z)e[-l, ”"IT} =1,
n t\ n non |

and

_pA(s—n-ln( _1),1
ﬁ(s)_p,(s——n"lﬁ Si n)+n’

| 1{n—-1 -1 1 n-1 -1
pA(S_—1)=inf{t: t>0,‘—(n ,...,n ;Si——,n ,...,n )
n t n n n n n

[

-1 1
a=p8(nn 1) and b=p,(s—;1), a,b>0.
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It follows from (2) that

1n— 1 1
3) In-1 <—(si——).
an b n

Since s; <1, we have b <a. By the convexity of the set (%) we get
M(E)+(1—-2A)eeu(®#) for any A (0<Ai<]).
We shall find 1, €(0, 1) such that the vector
w =21 f(s)+(1—-2o)e

belongs to the line / represented by the parametric equations z; =t, i€l,
teR. 1t is easily seen that

=20, 1)

an n
also belongs to the line I. We have

1& (n—1 b
ME)+(1=A)e = AEJZ# (T-’-;)e"

From the equation

oY)

we obtain

and 1,€(0, 1).

Hence w > f(I) and

) w-l1>rm-11, w-liepo-11,
n n n n
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but

1/n-1 1
=] : y—|—1)eu(PA—--1;.
a mf{tek t>9 t( " )eu(g’) m }

Let t, be the positive number satisfying the equation

n to n

It follows from (5) that t, < a. This inequality contradicts the definition of
the number a and completes the proof.

It is easy to verify that the Nash equilibrium 1=(1, ..., 1) corresponds
to the optimal fair division in the sense of Urbanik [5].
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