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1. Introduction. This paper deals with the non-I?> theory of
multilinear random forms and with product random measures. Multilinear
random forms appear naturally in statistics (especially quadratic forms) and
are discrete analogues of multiple stochastic integrals of the form

(1.1) [ [, s t)AM(t) ... -dM(1,)

where f is a deterministic function of n variables and M is a stochastic
process.

For M being the Brownian notion such integrals were first introduced
and studied by K. Itd [10]. The importance of the integrals (1.1) stems from
a number of applications such as the representation of non-linear
functionals on stochastic processes ([S], [12]), limit theorems for von Mises
statistics ([6], [4]), construction of self-similar processes ([21], [19]), and
expansions for kernels of solutions of the Schrédinger equation ([7]). A
general I? theory of multiple integrals was recently developed by Engel [5],
but very new results are available for the non-I? case (cf. [19], [15], [16)).

As far as multilinear random forms are concerned there exists a fairly
complete I? - theory for quadratic forms ([18], [23]), some stability results for
non-I? quadratic forms ([20], [24]) and a complete description of a.s.
convergent p-stable quadratic forms and their relation to 6,-radonifying
operators ([3]). The results presented in Section 3 deal with multilinear
random forms which have tail distributions similar to those of stable random
variables. The study of such forms requires a detailed analysis of the tail
behavior of distributions of products of random variables (Section 2).

In Section 4 we: prove the existence of general product random
measures. The quoted above Engel's work marks the first step toward the
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I? -theory of products of different random measures and our Theorem 4.1
generalizes his results in the case of identical factors. The Theorem 4.1 is the
basic step towards the construction of multiple integrals and permits explicit
evaluation of the product measure of n-dimensional tetrahedrons. In light of
Section 4 the results of Section 3 can be also interpreted as statements about
sufficient conditions for the existence of multiple integrals (1.1) of functions
that are constant on “rectangles” (cf. [3]).

At last, we would like to mention that simpler versions of the results of
this paper were announced, without complete proofs, in [15].

2. Distributional properties of products of Pareto-like random
variables. A non-negative random variable X is said to have a Pareto - like
distribution of order p, 0 < p < x, if

lim x? P(X > x)

X a0
exists and is positive. As examples of Pareto - like distributions we quote the
Pareto distributions themselves with densities px @ *P, x>1, 0 <p < x,
the distributions of absolute values of p-stable random variables, 0 < p < 2,
and, more generally, the distributions of absolute values of random variables
in the normal domain of attraction of p-stable distributions. Let us note that
a Pareto -like distribution of order p has all the moments of order g < p
finite and all the moments of order g = p infinite.

Since the density of Pareto distribution is given explicitly, one can
easily evaluate density of the distribution of the product of k i.i.d. Pareto
random variables X,, ..., X;:

(2.1)

a

"1 x prlogt~!x

‘ mka(w)‘fxl-...-xk_, (_v_v—)dw = = 1)l <7 T x21.
For other Pareto -like distributions a computation like (2.1) is not always
possible. For general stable distributions, which constitute an important
example, we don’t even have explicit formulas for densities available. We are

able, however, to obtain the asymptotic tail behavior of the products.

THEOREM 2.1. Let X, X,, X,, ... be i.id. random variables with Pareto -
like distribution such that

Jxpox (x) =

2.2) lim 2X >0 _

x-x X P
Then, for each k =1, 2, ...
. P(Xl'...'Xk>X) Ck
2. = .
@3 o rlogx T (k=1
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Proof. The proof proceeds by induction. The formula (2.3) for k =1 is
the same as the assumption (2.2). Let G,(x) = P(X, ... X > x), F(x)
=P(X<x)=1-G,(x) and let ¢, (x) = x"P?(plogx)*~!

Let ¢ > 0. Choose x > 1 such that for u > x

24) (1-g)cu™ <G (u) S (1+e)eu™?,

and, by the inductive assumption, such that

ck
< < .
k=1 o (1) < G (u) < (1 +8)(k ! oy (u)
To estimate G, ,(x) we decompose it as follows:
a— 1x

Gis1 (%) = IGk(x}’“)dF(yH f Gi(xy~ l)dF(y)+ I G (xy™")dF(y)

- 15

(2.5) (1—¢)

=1, (x)+1;(x)+13(x),
where x > 22, Observe that
1,9 < [Gy(ea™ ) dF (3) < Gy (xa™)
and ’
< [ dF0) =Gyl 'y
Hence I, (x)+15(x) = 0((pk+1():)) ;s x — %, and from this point on we need
to be concerned only about the behavior of I,(x).

The inequalities (2.5) yield the following two-sided estimate for I,:
e~ 1x

* a~ 1x
(-0 | e haFe) <@ <@rag Iy [ et a0
On the other hand
a”lx a” 1x
26 | ealxy™YdF() =— [ ou(xy~1dG,(y)

a"1x

- 0 1
—o(xy G, s By J‘ G, (y )%d}’

e lx

=0(u+1(X)+Px7? | G (»)y* '(logxy™ )~ dy

¢.1x

—k=Dp~'x7? | G, (y»)y*~'(logxy™ ') 2dy,
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where the last term vanishes if k = 1. By (2.2), the term next to the last can
be estimated from above and below as follows:

a” 1x a” lx

(1—e)c | y '(logxy )V 'dy< | Gi(»)y?'(logxy™ 'y~ 'dy

1«

<(l1—gc [ y '(logxy™ ')~ dy,

where

a lx
[ y~'(ogxy ')"'dy = k™' [(loga™" x)*~(log 2)*],

so that

1x

(1=2)ck™ Qs (M) +0(@usr (X) < P X7 [ Gy~  (logxy™ 'V~ Hdy

S(T+e)ck™  @piy (X)+0(@4 4y ().

For k > 1, the last term in (2.6) is o(@+,(x)) as x— x, by a similar
argument, so that, finally

+1 +1

I Ou+ 1 () +0 (x4 1 (%)) S I2(x) < (1+¢)? Kl

Remark 2.1. We would like to note that the above method of proof
also gives the following implication: if X, X,, X,,... are iid. random
variables such that

(1—¢)? @i+ 1(X)+0(@4 4 (X))

— P(X > x)
Im —<c< x,
X P

then, for each k=1, 2, ...
EP(XI-...-X,‘>x)< ct .
oo X P(plogx)~! (k—1)!

A similar result can be obtained for lim .

The above theorem permits us to show that the products of p-stable
random variables have distributions in the domain of attraction of the p-
stable law. The following corollary gives an even stronger result.

COROLLARY 2.1. Let Y,, Y,, ... be a sequence of i.i.d. random variables
with a symmetric distribution v. Assume that v is in the normal domain of
attraction of a symmetric p-stable distribution p (0 <p <2), ie.

LNy Y)=>u asn-x.
j=1



MULTILINEAR FORMS 307

Let keN. If Z%, Z%, ... is a sequence of i.i.d. random variables such that

LZP) =2, ...-Y)

then
Llay?y ZM)=>p asn- =,
j=1
where
k—1
a, = a,(k) =(k—1)! n(logn)*~1,

and ¢ = lim x?v {(x, )} = lim x?u {(x, x)].

Proof. In view of Corollary 6.18(a) of [1] it suffices to show that
limnP(|Y;- ... Y| >al?) =c.

Applying Theorem 2.1 we have that the above limit is equal to

=D lim na, ! (plogal/?*~ ! =c.

3. Multilinear forms: convergence and tail behavior. Throughout this
section X, X,, ... is a sequence of ii.d. symmetric random variables such
that

lim x? P(X,| > x) < ¢ < =,

P Sandy 4
where 0 < p < 2. The results of the previous section show that for each k
=1, 2, ..., there exists a constant C, , such that for all x>0

(3.1 P(X, ... X\l >x) < C,,x (1 +logh ! x).

Let ke N. In what follows we study the behavior of the multilinear forms

Qf-k)(f)= z f(il’”-aik)xil""'xik,
1 <n

Sipseenik

where f is a real function defined on N* and such that Sy, ..., i) =0
whenever two or more indices coincide.

We say that Q¥ (f), Q¥ (f), ... converge unconditionally (as., in P, in I
if for any {—1, +1}-valued function ¢ =¢(i,, ..., iy) on N* the sequence
0P ), 0P (gf), ... converges. We would like to remark that the
unconditional a.s. convergence defined above is weaker than the a.s. conver-
gence for all permutations of f (cf. Ulyanov’s example mentioned in [13]).
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THEOREM 3.1. If

NYNDZE Y 1S Gy iP(L+10g5 Y £ (igs . )] 7Y < 0

Bgeeensiy

then the sequence Q¥ (f), Q¥ (f), ... converges unconditionally in I¢ for every
q <p to a QW (f) which, for all x > 0, satisfies the following inequality

(3.2 P(IQW(f)l > x) < Dy, x P(1+1ogh” ' x) N® (1),
where

D, =2 1ki=Pc,

k,p 2_p k,p

Proof. Let us denote ¢(x)=x"?(1+logk'x), x>0. It is easy to
check that ¢ is submultiplicative with a constant 2*7! e

@(xy) < 2*" ' p(x)@(y) for every x,y > 0.
Define

U"= max |f(i1,...,ik)X,-l,...,X-

il
1<iy,...ig<n k

Then, suppressing the superscript (k), we get that

(3.3 P(1Q.l > x) < P(IQ,l > x, U, > x)+ P(1Q,l > x, U, < x)
SPWU,>x)+P( Y Y, ...,i)|>x)
1ig,..ig<n
where Y(iy, ..., i) is the truncation of f(iy,..., i) X; ... X, at level x.

From (3.1) we obtain that
(34) PU,>x< Y  P(fGy, ..., Xi; ... X;| > x)

1<€ig,...,ix<n

S Ck.pz (p(xlf(il’ (RS ik)l-l)'

To estimate the second term in (3.3) observe that Y’s are uncorrelated as
long as i ) <i (3 <...<li g for a fixed permutation = (and only the above
case needs to be consndered since f vanishes on all “diagonal” sets by
assumption). To simplify the notation we will work only with n being the
identity. Then, by Chebyshev’s inequality

35 P y YGy, ..., i) > X)

1€iy <ig<..<igy<n

<Sx2E(XYGy,s ..o i) =x"2Y EY?(iy, ..., iy)

= 2x'22}uP(|Y(il‘, coey )| > u)du
0
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<2C,,x7 %Y fup(ulfly, ..., i)~ ')du
0

XSG gseemnip
=2C,, X 2 f2(iys o-os i) [ ve@dv

0
XSG gsenip)

<2C,x Y [y, -.os i) [1 41085 (XIS Gys - on i)l 7Y)] f v~ Pdy

0

=2 G, oIS iy ey i)

2—p
Now (3.3) together with (3.4) and (3.5) and the submultiplicativity of ¢
give the inequality (3.2) for finite multilinear forms. This permits us to
establish that for each fixed {—1, +1} -valued function ¢ =¢(i,, ..., i;) on
N, QP (¢f), Q¥ (ef), ... is a Cauchy sequence in probability and in I, q < p,
provided N¥(f) < 0.

4. Product random measure. Let M be an atomless random measure
(i.e. measure with values in I°(2, #, P)) on a Polish space T equipped with
the Borel o - field #(T). We assume that M is independently scattered, i.e. for
any collection of pairwise disjoint A,, ..., A, #(T) the random variables
M(A,), ..., M(A,) are independent. There exists a positive atomless measure
u which is mutually absolutely continuous with respect to M. We call it
a control measure of M and an explicit formula for x4 can be found in [22].

For B=A, x... xA, we set

M"(B) = M(A,)- M(A,): ... -M(4,),

and extend M" to a finitely additive (but not independently scattered)
random set function on the field spanned by “rectangular” sets. Engel [5]
(Thm. 4.5) demonstrated that, under high moment assumptions on M, M"
extends to a countably additive I?-valued measure (actually he proved the
result in a more general contex of product of different random measures, see
also [14] for ! and I? theory of product random measures).

Using the above result we are able to prove the following general

THEOREM 4.1. M" extends to a countably additive vector measure with
values in I°(Q, &, P).

Proof. Itis well known (see e.g. [17]) that M =Q+R,i=1,2,...,n,
ie. M(A)=Q(A)+R(A) as. for every Ae #(T), where Q and R are
independently scattered random measures, Q has all moments finite, and for
every we 2, R(’)(w) is a signed measure with finite support. By Engel’s result
quoted above, for each subset I = {1, ..., n} = N, there exists an IZ - valued
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countably additive product measure
0'=]]¢
iel

defined on #(T'). On the other hand, for each J = N, and every we$, the
product measure

R'()(@) =[]R() (@)
jsl

is well defined on #(T’) as a measure with finite support.
For each weQ and Be #(T") define

M"(B)(w) =Y. [ Q'(B“)(w)R" (du)(w),

T NI

where the summation extends over all subsets I <N, and B
= {veT': AweB, w|; =v, wly, =u) for every ue T"V. Note that, since for
every we Q2 the signed measure R" /()(w) has finite support, the integral in
the above formula is well defined, and by the independence of Q, and Ry,
we have

@4.1) PlweQ: ( Q'(B)(w)R"!(du)(w)eE}

TN 1

=P xP{(w;, w;)eQxQ: [ Q'(B")(w,) R" (du)(w,)e E}
"y

for any Be #(T") and Ec #(R).
Let B,, B,, ... be a descending sequence of sets from #(T") such that
(B, = 0. For every I c N and ue TV

lim Q' (B})(w,) =0

k=0

in P(dw,). Since, for each w,eQ, RV ()(w,) is a measure with finite support,
we have, for each w,e (2, that

lim [ Q'(BY)(w,) R"'(du)(w;) =0

k- TN"

in P(dw,). Now the continuity at @ of M" follows directly from the Fubini's
Theorem (our first encounter with it was through [9] in our real analysis
courses) and (4.1). Since M"(A4, x ... xA,) = M"(4, x ... x A,) as. for any
choice of A, ..., A,e B(T), M" is a countably additive extension of M".

Let M be an atomless independently scattered random measure on
#([0, T)). Then the logarithm of the characteristic function of M can be
written in the Lévy’s form
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log E exp (itM (A))

= itv(A)—3o2(A)*+ | (e"*—1—txI(]x| < 1))n(A, dx),

-

where v is a signed measure on #([0, T]), o is a non-negative finite
measure defined on #([0, T]) and n(du, dx) is a non - negative measure on
2([0, T] xR) such that n(A4 x(—¢, ¢)) <o for every 4 and & >0, and
+1

| x*=([0, T], dx) < 0. Since, for every integer k > 2,
-1

1
x| n(du, dx) = | |x/*=([0, T], dx) < o,
-1

[0, T)x[—1,1]

we get that
M, (A) = I(M(d'))k
A

is a well-defined atomless independently scattered random measure. The
variational integral above is defined as

||lvi|moZ(M [, tisy) N A])
in probability where P = {to, t,,...,t, is a partition of [0, T] and |P|
= max|t; 4+, —t;] (cf. e.g. [2]). Theorem 4.1 and the above comments permit a

straightforward adaptation of the proof of Theorem 6.1 of [5] to obtain the
following
CoROLLARY 4.1. Let M be an atomless, independently scattered random
measure on #([0, T]). Let H(n,, ..., n,) be the number of distinct ways of
partitioning {1, ..., n} into subsets of sizes (n,, ..., n). Then
M(dty)- ... -M(dr,)
0sty <..<t,S€T
l n k k T .
=— Y  H(ny,..,m)(-1)"* ]_[l(n,-—l)! [T [(M(@n)*.

n!k=ln1+...+nk=n i=10

ExampLE 4.1. (a) If n=2 we have H(2)=1, H(1,1) =1 and
T
M (dt,) M (dr;) = 3[ — (M (dD)*+ M?([0, TD)],
1]

0<t) <1<T

which, in the case when M ([0, t]) = B(r) is a Brownian motion, reduces to
the well-known formula

1
(B(1)dB(1) = §(B*(1)—1).
0
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(b) In the case when M([0, t]) = N(1) is a homogeneous Poisson
process we obtain that

[ dN@)dN@E) =3[-N(D+N*(D].

0<iy <1<T

(c) If M([0, t]) = X,(¢) is a symmetric p-stable stationary process with

1]
independent increments, then X, (1) = [(dX,(n))* is a stationary (p/k)-stable
(v}

process with independent increments, symmetric if k is odd, and non-
negative for even k’s (cf. eg. [8]). Thus

dX (1)) dX,(t2) = $[— X2 (T) + XZ(T)],

0<ty <ty <T

and more generally, the product stable measure of the tetrahedron {0 <1,
<...<t,<T) is a polynomial in stable random variables of orders p/k,

k=1,2,...,n (cf. [11]).
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