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1. Introduction and terminology. Throughout we assume, unless
the contrary is specified, that X is a Hausdorff locally convex space (LCS)
with the topology & and, when it is necessary to emphasize a particular
locally convex topology # on X, we shall write X as (X, #). We write X*
for the topological dual of (X,#). If X and Y are vector spaces forming
a dual pair, we use the symbols ¢(X, Y) and (X, Y) for the weak and
the strong topologies on X, respectively, and denote by X** the topolo-
gical dual of (X*, 8(X*, X)). Let, further, ¢(X**, X*) denote the topology
of uniform convergence on all #-equicontinuous subsets of X*, which is
a locally convex topology on X**, and let J denote the usual canonical
embedding of X into X**, i.e., J(2)(f) = f(x) for all ze X and fe X*.

Let {M;} be a sequence of non-trivial subspaces of (X, #). We say
that {M,} is an F-basis of subspaces (£-bos) or an F-decomposition for

(X,#) if to each xre¢ X there corresponds a unique sequence {x;}, ;¢ M;,
such that

the convergence of the infinite series being with respect to the topology #.
Given an #-bos {M;} in (X, #), there exists a sequence {P;} of orthogonal
projections on X defined by

n

P;,(x) = x;,, where z = limZa}i and x;e M;, 1 > 1.

n=—00 j—1

Then, for all ze X, Pj(x) = Py(x) and P,(P;(x)) =0 if & s j. If,
for a given #-bos {M,} for (X,%), each projection P; is continuous on
(X,#), then {M,} is called an %-Schauder basis of subspaces (#-Sbos)
or an %-Schauder decomposition.

Since the adjoints of projections are again projections on the dual
space, one may be tempted to know if the dual X* of an LCS X, having
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a Sbos, has also a Sbos. In this note* we are interested in the study of the
existence of a Sbos in the topological dual X* of an LCS X which has
a Sbos and wvice versa.

In the following section we come across problems pertaining to
o(X*, X) and (X", X)-continuous linear operators and their adjoints
as well as to certain characterizations of #- and (X", X)-Sbos in X and
X*, respectively.

2. Adjoints on X*. We start with the following proposition, whose
trivial proof is omitted:
ProrosiTION 2.1. If (X,#) 48 an LCS, then the linear map

J: (X, o(X, X%) - (J(X), o(J (X), X))

18 a topological isomorphism.

It is clear that ¢(X**, X*) c g(X**, X*), and if X is infrabarrelled,
then ¢(X**, X*) = (X**, X*) and conversely ([1], p. 229). Consequently,
we have

PRrROPOSITION 2.2. If X is infrabarrelled, then J is a topological iso-
morphism from (X, F) into (X**, B(X**, X*)) or onto (J(X), B(J (X), X*)).

Let X and Y be two vector spaces forming a dual pair with respect
to the bilinear form <z, y), xe¢ X, ye Y. Suppose that T: X — X is a linear
operator. We may define another linear operator T%: Y — Y by the
relation

(z, T*y> =Tz, y>.

Let now X be equipped with 2 locally convex topology #, let X*
be the topological dual of (X,#) and let Y be the algebraic dual of X.
Then X* ¢ Y. Suppose now ¥ is any other locally convex topology on X
compatible (see [1], p. 198) with the pairing of X and X*. Then under
T*, as defined above, elements of X* go to X", i.e.,, T*"(X*) « X*. Now
let X* be equipped with a locally convex topology 7 such that v is com-
patible with the pairing of X* and X. Then it is clear that the restriction
of T* on X* is continuous on (X*, 7).

ProprosITiION 2.3. Consider an LCS (X,F) and a linear operator
T: X* - X* such that T is continuous on (X*, B(X*, X)). Then the adjoint
map T* of T is continuous on (X**, (X, X*)) and takes X™* into X**.

Proof. By the remark preceding Proposition 2.3, it is clear that the
adjoint T* exists on the algebraic dual of X* and that 7T%(X™*) < X™**,

To prove the continuity of T*, let F, — 0 in g(X™**, X¥). Let A be
an arbitrarily chosen o(X*, X**)-bounded set in X*. Since g(X*, X)

* Research of the second author has been supported by the Indian Institute of
Technology, Kanpur (India).
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and ¢(X*, X**) are computible topologies on X*, it follows from Mackey’s
Theorem ([1], p. 209) that 4 is (X", X)-bounded, and since T is §(X*, X)-
-continuous on X*, T(4) is (X", X)-bounded on X* which implies, by
Mackey’s Theorem once again, that T(4) is ¢(X*, X**)-bounded on X*.
Thus

F.e[T(A)]® for all a> a, == a4(4),

whence

lFu(T(f)H{l for all fe A and a > a,,
IT*(F)(f)I <1 for all fe A and a> a,,
T*(F,)e A° for all a> a,,

where A° is the polar (see [1], p. 190) of 4 in X**; since A4 is arbitrary,
it follows that T*(F, —0 in (X**, B(X**, X*)) and the proof of the
proposition is completed.

PROPOSITION 2.4. Let (X, %) be an LCS, and X* the topological dual
of (X,#). If T is a o(X*, X)-continuous linear operator on X* and T*
18 the adjoint of T defined on the algebraic dual of X, then T (J (X)) = J (X).

Proof. Let FeT*(J(X)) be such that therc is an zeX with ¥
= T*(J (2)). As T is o(X*, X)-continuous, there exists a ye X, depending
on wx, such that

IT(f)(x)| < If(y)l for all fe X*.
Therefore '
J(@NT(H) < If(y)l  for all fe X¥,
whence
|T*J (@) (f)| < If(y)]  for all fe X*
and
F(f)l < |fy)l for all fe X*.

Thus ¥ is a o(X", X)-continuous linear functional on X*, and so
I'e J(X), which completes the proof.

ProposirioN 2.5. Let (X, %) be an LCS. Then every o(X*, X)-contin-
uous linear operator T on X* into itself is B(X*, X)-continuous.

Proof. Let U be a p(X*, X)-neighbourhood of 0¢ X*. Then there
exists a bounded set 4 in X such that 4°c U. If T is the adjoint operator
of T, if follows that T* is ¢(X™™, X*)-continuous. By Proposition 2.1,
J(A) is ¢(X**, X*)-bounded, and so is T*J(A4). Since T is ¢(X", X)-
-continuous, by Proposition 2.4 we have T*J(X) < J(X), and so T*J (4)
c J(X). Set B =J 'T*J(A). Then it follows from Proposition 2.1
that B is o(X, X*)-bounded, which implies that B° is a (X", X)-neigh-
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bourhood of 0« X*. Now it is sufficient to show that B’ « T!(U). Take
fe B°. Then

If[J'T*J(x)]l<1 for all xe A4,
IT*J (2)(f)| <1 for all ze A, |J(x)(Tf) <1 for all ze A,
|ITf(x)| <1 for all ze A, TfeA®<c U, T(B»cU.

PROPOSITION 2.6. If (X, #) is an infrabarrelled space and T is a linear
operator on X* into itself such that T is o(X*, X)-continuous, then E
= J'T*J is an F-continuous linear operator on X into itself.

Proof. Propositions 2.3 and 2.5 ensure the existence and continuity
of T* on (X**, B(X**, X*)). From Proposition 2.4 it is clear that the range
of K is in X. Also, X is infrabarrelled, and so J 1s a topological isomorphism
in the sense of Proposition 2.2. The result now easily follows.

Remark. Following the proof of Proposition 2.6 we can easily see
that if T is a projection on X*, then E (defined as above) is also a projec-
tion on X.

We also need the following result:

ProrosiTION 2.7. Let (X, Y) be a dual pair of vector spaces. If » is
a collection of o(X, Y)-continuous linear maps from X into itself such that,
for each re X, the set {f(x): fe »} is B(X, Y)-bounded, then » is a (X, Y)-
-equicontinuous family.

Proof. The proof follows by an easy application of the well-known
bipolar theorem ([1], p. 92). Indeed, let A be a ¢(Y, X)-bounded set. Then
A° is a B(X, Y)-neighbourhood of 0¢ X. Clearly, B = M {f '[4°]: fe x}
is balanced, convex, ¢(X, Y)-closed and absorbing. Hence B = B and
the result is proved.

The following proposition has been proved in [2].

PROPOSITION 2.8. Let X be a complete Hausdorff topological vector
space whose topology F is generated by a family {p,: Ae D} of pseudo-norms,
D being a directed set. Suppose further { M, } is a sequence of non-trivial closed
subspaces of X such that

ID jy[n] - X.
n=-1

If, for every Ae D, there exists a pe D and a constant K, > 1 such that

pi( 3 o) < Kipa )
i=1 i=1

for all integers m, n > 1, m < n, and for all sequences {x;} of X with x;e M,,
then {M,} is a Schauder decomposition for X.
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Note. If each pseudo-norm in Proposition 2.8 is replaced by a para-
norm, the above result is due to Russo [5]; however, his proof is still
different from ours.

Proposition 2.8 may be used to derive

ProrosiTioN 2.9. If {E;} is a sequence of continuous, non-trivial,
orthogonal projections of a complete barrelled space X into itself and if
{ 3 E;(x)} is bounded for each xe X, then {R(E;)} is a Sbos for | R(E;)|
t=1 =] =1
and {R(E})} is a Sbos for | R(E})] wn B(X*, X).

i=1
Proof. Let

From hypothesis, {@,} is a non-trivial sequence of continuous
projections which is also pointwise bounded on X and so, by the barrel
theorem ([3], p. 104), is equicontinuous on X. Let now D denote the
family of all continuous seminormms on X. Then, for a given pe D, there
exists a K, >0 and a ge D such that

(1) P(@. () x)) < K,q(x) for all n>1 and ze X.

Choose integers m and % with 1 < m <n» and let

r = ;'wi, re R(E) (1<t<n).

Then, by (1),

p(So) = p(0a( D)) < Ko Y a),

and we get the first part of the proposition from Proposition 2.8.
To prove the second part, let

n
* 2 ! %
Qn = Ei ’
i=1

where E is adjoint of E,. It follows that @, is ¢(X*, X)-continuous.
Observe that {Q, ()} is bounded for each x¢ X, and so {f(Q,(x))} is bound-
ed for each z¢ X and each fe X*. Thus {@;(f)} is (X", X)-bounded
for each fe X*. Since X is barrelled, {Q,(f)} is B(X*, X)-bounded. Thus,
by Proposition 2.7, {Q,} is B(X*, X)-equicontinuous. The rest of the proof
now follows as the first part did.:
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3. The main theorem. We are now ready to state the main result of
this paper:

THEOREM 3.1. (i) Let (X,%) be an LCS. If {M;, E;} s an %-8bos
for X, then {R(E}); E;} is a o(X"*, X)-Sbos for X*.

(ii) Let (X, %) be a complete barrelled space. If {N,, P} i3 a o(X*, X)-
-Sbos for X*, then {R(E,), E;}, where E;= J 'P};dJ, is an F-8bos for X.

Proof. (1) The proof is straightforward and is therefore omitted.

(ii) By Proposition 2.6, each E; is a continuous projection on (X, #).
Now from hypothesis, for each fe X",

n

f=1lm Y P(f) (n oX" X)),

R0 =1

whence

f(z) = lim ZP,.(f)(m) for each ze¢ X and fe X*.

=00 -]

By Proposition 2.4, for each xe X there exists y,e X with Pj(J(z))
= J(y;). Thus

E(x) = J'P}J (x) = y;.
Also
Pi(f) (@) = J (@) (Pi(f) = P; (J (@) (f) = J@)(S) = f(y:) = f(Bi()).
Hence, for each z¢ X and each fe X%,

fl@) =[lim ) f(B;(x)),

R0 =1

and so the sequence [ZE,-(m)} is ¢(X, X*)-bounded. Therefore, by the
i=1

quoted Mackey’s theorem, it is also #-bounded, and hence, by Proposi-

tion 2.9, the required result follows, provided we could show that

X, = [QR(Ei)] - X.

‘However, this easily follows from the Hahn-Banach Theorem. Indeed,
let ze X and x¢ X,. By the Hahn-Banach Theorem there exists an fe X*
with f(x) = 1, and f(y) = 0 for all ye X,. Since E;(z)e X, for each 7> 1,
we have

1 =f@) = D f(Ew) =0,

but this is absurd and so # = X,. The proof is completed.
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Theorem 3.1 may be used to derive the following result:
THEOREM 3.2. Let (X,%) be a complete barrelled space. If {N;, P;}

is a o(X", X)-Sbos for X*, then {N,, P;} is a B(X*, X)-8bos for |U R(P;)].
iz1

Proof. Let E; = J 'P;J. Then, by Theorem 3.1 (ii), {R(E,), E;}
is an #-Sbos for X and so, by Proposition 2.9, {R(E})} is a g(X*, X)-Sbos

for [U R(E;)]. We need to show now that E; = P; for each i>1. To
i=1

prove it, let ze¢ X and fe X* be chosen arbitrarily but fixed. By Proposi-
tion 2.4, P;(J (X)) = J(X). Then there exists a y;e X with P} J (x)=J (¥,).
Hence

B (f)(z) = f(Bi(=)) = f(J7'PiJ (@) = f(y:)
= J () (f) = P{(T @) (f) = I (@)(P:(f)) = Pi(f)(2).

Thus E;(f) = P;(f) and the proof is completed.

Remark. Theorems 3.1 and 3.2 generalize similar results in norm-
ed spaces proved by Retherford [4].
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