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The notions of nearly continuity/openness and almost continuity/
openness stem from functional analysis; they appear in context of the open
mapping, the closed graph and the Souslin - graph theorems, and also of the
purely topological Blumberg’s theorem (see e.g. [2], [4], [5], and references
therefrom).

A mapping f: X — Y, where X and Y are topological spaces, is said to
be nearly continuous (resp. nearly open) at x if for every open neighbourhood
V of f(x) (resp. U of x) ;

xelnt f=1(V) (resp. f(x)elInt f(U));
f is almost continuous (resp. almost open) at x if for every such V (resp. U)

xelntD(f~1(V)) (resp.f(x)eInt D(f(U)).

(D(A) denotes — as in [1] — the set of all points of the underlying space at
which A4 is of second category.) The resulting sets of points of nearly
continuity (nearly openness) and almost continuity (almost openness) of f are
denoted — respectively —- by C,(f) (0,(f)) and C,(f) (O,(f)). Obviously

Co(f) 2 C(f) and  0,(f) = 0,(f).

If Y has a countable base, then C,(f) is residual in X, i.e. its complement is
of first category (cf. [4], Theorem 1). On the other hand, almost continuity is
a rather strong property: each almost continuous mapping f: X — Y having
the Baire property is continuous provided that Y is regular ([4], Theorem 4).

In Theorem 3 of [6] we constructed a nearly continuous bijection f: R
— R such that the set O, (f)uC,(f~!) was co-dense. Here we give an
example of a similar kind — an almost continuous (hence nearly continuous)
bijection f: R— R such that the set C,(f~') is of measure zero. Both
examples contrast with the fact that each continuous real bijection is a
homeomorphism.

The following lemma is a convenient version of the Sierpinski-Lusin
theorem [3].
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LemMMma 1. Each second category set A — R can be represented as a
disjoint sum \J A,, where D(A) = D(A,) for all ke N.
1

Proof. Define G = Int D(A); since A\G is of first category (cf. [1],
1.10.VI),

D(A)=D(AnG)=0G.

Let G= |J G;, where @ # Ny, = N and G; are pairwise disjoint non - empty
ieNg
open segments. We have

by the Sierpinski—Lusin theorem (cf. [3], p. 115 and 176), each set AN G; is

[ o]

of the form () A;, where
k=1

Apyn Ay = @O whenever k # k'

and
D(4,) =G, for all ke N.
Put
A= U 4, U(4\0)
ieNg
and

A, = Ay for k= 2;

ieNg
these sets satisfy the requirements.

When we say that C is a Cantor set we mean that C is a subset of R
which is a homeomorphic copy of the Cantor ternary set of the closed unit
interval I.

LemMa 2. Each Cantor set of positive measure contains a Cantor set of
measure Zzero.

Proof is an easy exercise.
Given a measurable set 4 in R, we define

P(A) = {xeR: m(AnU)> 0 for every open U>x]},

where m stands for the Lebesgue measure; it is a measure - theoretic
analogon of the set D(A).

LeMMa 3. Suppose X — R is a second category set of power continuum
and Y c R is a non-empty Borel set such that

YeD(Y) or YcP(Y).
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Then there exists a bijection f: X — Y such that for every open set V in R
VAY# @ implies D(f ' (VAY))=D(X).

Proof. 'By Lemma 1. X is of the form () A4,, where D(X) = D(A4,)
k=0

for all k; we may additionally assume that A4, is of power continuum.

Let {V,: ke N} be an open base for the subspace Y of R, consisting of
non-empty sets. Since V; is an uncountable Borel set in R (of second
category or of positive measure), it contains a Cantor set C, of measure zero,
by the Alexandroff-Hausdorff theorem (cf. [1], 3.37.I) and Lemma 2. For the
same reason, V,\C; contains a Cantor set C, of measure zero. Continuing
this process we get a pairwise disjoint sequence {C,} of Cantor sets of
measure zero in Y with

k-1

CkCVk\U C,' fOl‘ kEN.
i=1
Let f, (ke N) be an arbitrary injection of A4, into C,. Put

Co = Y\Qﬁ,(Ak);

a0
C, is of power continuum, because Y \(J C, is a Borel set which is of second
1

category or of positive measure. There is a bijection f,: Ay — C,. Define
S (x) = fi(x) whenever xe A, (k > 0). For any index k > 1 we have

D(f~'(V)) = D(f~'(C)) = D(4,) = D(X),

which yields the assertion.

THEOREM. There exists an almost continuous bijection f of R onto itself
such that the set C,(f ') is of measure zero.

Proof. Put X, =[2—1,2k] for keN, X, =R\{JX,. Choose a
disjoint sequence {Y;: ke N} of Cantor sets in R with Y, c:lP( Y,) and m(Y,)
=0, where Y, = R\G Y,. By Lemma 3, there exists a bijection f, of X, onto
Y, (which is residuall) such that for every open set V in R

VAYe# @ implis D(fy'(Vn Y) = D(Xo),

and for each ke N there exists a bijection f,: X, — Y, such that for every
open V

VaY,# @ implies D(fi'(VnY))=D(X)).
Let f denote the bijection of R onto itself built up of all those partial
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bijections. f xe X, and V is an open neighbourhood of f(x), then
D(f~'(V)) > D(fs (VN %) > Xo,

which shows that xe C,(f) (X, is open). If xe X, (k = 1) and f(x)e V (open),
then VNnY, # 0 and

D(f7'WM)=>D(fi ' (VnY)ufo ' (VN Yy))> X, U X,,
which again yields xeC,(f) (because xelnt(X,u X,)). Thus C,(f) =R.
Since each set f(Int X,) is nowhere dense,

On(f)cR\QIntX,‘.

Hence

C.(f™H =f(0x(N)) = VoL f(N),

where the set on the right is of measure zero.

It is possible to modify the proof so that to get a bijection f: I — I with
the same properties. To this aim, put J = (0, 1], I, =[1/(2k), 1/(2k—1)] and

Xo =J\UI. Choose X, (ke N) so that:
1

X, contains a Cantor set (which can be previously chasen),

Iy = Xok- 1V X = D(X3x-1) = D(X ),

Xu-1n Xy = 0 for all k.

Choose Cantor sets Y, = J so that Y, « P(Y;), m(Yy) =0 (where Y,

=J\G};) and limsupY,, =0. Now we find f,: X, — Y, (k = 0) with the
1 k

help of Lemma 3 and get a bijection f: J —J such that C,(f) =J and
C.(f!) is of measure zero. We extend f on I defining f(0) = 0; given a
neighbourhood V of 0, there is an index k, such that

Yo <V for k = kg,
and so
D(fT'M)>D(fe ' (VN Yo)u fu' (Ya)
=D(Xo)UD(X3) > Xoul, for k > ko,
which shows that 0e C,(f).
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