COLLOQUIUM MATHEMATICUM

VOL. LVI 1988 FASC. 2

ON ADMISSIBLE WHITNEY MAPS

BY

HISAO KATO (HIROSHIMA)

1. Introduction. Throughout this paper, the word compactum means a
compact metric space. A continuum is a connected compactum. Let X be a
metric space with metric g. The hyperspaces of X are the spaces

2¥ = {A4| A is a nonempty and compact subset of X!

and
C(X) = {A€2* A is connected)

which are metrized with the Hausdorff metric gy, ie.,

on (A, B) = max {supg(a, B), supo(b, A)}.

aecA beB
A Whitney map for a hyperspace .# = 2X or C(X) is a continuous function
w: # —[0, w(X)] such that w(ix]) =0 for each xeX, and if 4, Be.¥,
A c B and A # B, then w(4) < w(B). In [12], Whitney showed that for any
metric space (X, o) there always exists a Whitney map for # = 2¥ or C(X).
We recall the construction. Let A€.#. For each n> 2 let

F,(4) = |K < A| K # @ .and the cardinality of K is < n}.
Also, define 4,: F,(A) =[0, o) by letting
Au(1ay, a3, ..., a,}) = min \o(a;, a))| i #j)
for all \a,, a,, ..., a,} €F,(A), and let

w,(4) = SUPA,, (Fn(A))
Then

@

(*) w(4) = Y 0,4)/2"".

. n=2
The notion of Whitney map is a convenient and important tool in order to
study hyperspaces theory. It is of interest to obtain information about
Whitney levels w™'(r) (0 <t <w(X)) and to determine those properties
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which are preserved by the convergence of positive Whitney levels w™1(t,)
(t, > 0) to the zero level @ !(0) = X. In [3] and [11], Curtis, Schori and
West proved that for any Peano continuum (= locally connected continuum)
X, 2¥ is homeomorphic to the Hilbert cube Q =[—1, +1]%, and if X
contains no free arc, C(X) is homeomorphic to Q. In [5], Goodykoontz and
Nadler introduced the notion “admissible Whitney map”. A Whitney map w
for o = 2X or C(X) is admissible [5] if there is a homotopy h: # xI — ¥
satisfying the following conditions:

(A1) for all A es#,
h(4,1)=A, h(4,0eF,(X)={ix}| xeX};

(A2) if w(h(A,1))>0 for some A€, tel, then
w(h(4, s)) <w(h(A,t)) whenever 0<s <t <1.

In [5], it was shown that if X is either a compact starshaped subset of
a Banach space or a 1-dimensional AR (= dendrite), then there exist
admissible Whitney maps for # = 2X¥ and C(X). By using the notion of
admissible Whitney map, Goodykoontz and Nadler [5] proved the following

(1.1) Let X be a Peano continuum and let w be an admissible W hitney
map for # = 2% or C(X). If # = C(X), assume that X contains no free arc.
Then, for any t€(0, (X)), @~ '(t) is a Hilbert cube.

A Whitney map w for .# = 2X or C(X) is strongly admissible [6] if there
is a homotopy h: .# xI — ¥ satisfying (Al), (A2) and

(A3) h({x},t) = {x} for each xeX and tel.

In [6], we proved the following

(1.2) Let X be a Peano continuum and let w be an admissible W hitney
map for # = 2* or C(X). If # = C(X), assume that X contains no free arc.
Then the restriction

wlw™((0, w(X))): @~ 1((0, @(X))) = (0, (X))

of o to @ '((0, w(X))) is a trivial bundle map with Hilbert cube fibers.
Moreover, if X is the Hilbert cube Q, then there is a Whitney map w for
H =22 or C(Q) such that w|w™*([0, w(Q))) is a trivial bundle map with
Hilbert cube fibers. Also, if X is the n-sphere S" (n>=1), then there is a
Whitney map w for # =25" (n>1) or C(S") (n>2) such that, for some
to €(0, @(SM), wlw™1((0, to)) is a trivial bundle map with S"xQ fibers.

The purpose of this paper is to prove the following:

(1) Let P be a finite collapsible polyhedron and let s# = 2f or C(P). If
# = C(P), assume that P contains no free arc. Then there is a Whitney map
w for # such that w|w™!((0, @(P))) is a trivial bundle map with Hilbert
cube fibers.
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(2) Let K be a cubical complex and let P = |K|. Let o = 2f or C(P). If
H# = C(P), assume that P contains no free arc. If K is locally regular
collapsible, then there is a Whitney map o for »# such that, for some
to €(0, w(P)), w]w™*((0, to)) is a trivial bundle map with P xQ fibers.

2. Whitney maps and hyperconvex metric spaces. A metric space (X, o) is
hyperconvex (or injective) [1] if ¢ is convex and any collection of solid
spheres in pairwise intersection in X has a common point. In [1], Theorem
3, it was proved that a metric space (X, g) is hyperconvex if and only if every
mapping which increases no distance from a subset of any metric space Y to
X can be extended, increasing no distance, over Y.

First, we show the following

(2.1) THEOREM. Let (X, g0) be a hyperconvex metric compactum. Suppose
that w is the Whitney map for # = 2X or C(X) which is defined by () and the
metric 9. Then w is strongly admissible.

Proof. It is well known that there exists a Banach space B with norm
I Il such that B contains X and, for any x, yeX, o(x, y) = ||x—yl| (see [8]).
Let ' be the Whitney map for s#’ = 2 or C(B) as is defined by () and the
metric ¢’, where ¢’'(b, b)) = ||b—b’|| for b, b’ €B. Since X is an AR (see [1]),
there is a retraction r: # — X, ie, r({x}) =x for each xeX. Let Ae#.
Define a homotopy h,: A xI =B by

(1) hq(a,t) =(1—1t)-r(A)+t-a for each aeA,tel.

Also, define a homotopy h': # xI — ¥ by

(2 hW(A,t)='h,(a,t)] acA} for each A€, tel.

Since (X, g) is hyperconvex, there is a contraction f: B = X, ie,
e(fW.f@)<eW,2)=lly—zll for y,zeB.

If x, yeA, x#y, and 0<t <t <1, then

) Q’(h4 (x, 1), hy(y, £)) = lIt' Ce=p)Il <le (x|

= Q’ (hA (x, t), hA (y, t)).
Hence, if A is nondegenerate, by (3} we have

4 ' w (W4, 1) <w'(K(4,1) for 0t <t<1
(see [S], (2.13)). Since f is a contraction, we can easily see
) o(f(F4, )= (f(F (A4, 1) <o'(K(A, 1) for each Ae K, tel.
Consider the function K,: s x[0, o) = # defined by
K,(A,s) = |xeX| g(4, x) <s} for each AeH, se[0, o).
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Since g is convex, K, is continuous (see [5], (1.2)). For each A€.# and t€l,
there is the minimal number m(A4, t) > 0 such that

(6) w(K,(f (K (4, 1), m(4, 1)) = o' (K (4, 1).
Define a homotopy h: .# xI — % by
U] h(A, t) = K,(f (1 (A4, 1), m(A,1)) for each Aes#,tel.

Clearly, we have w(h(A4, t)) = '(K' (4, 1)). Hence (4) implies that o satisfies
the condition (A2). Obviously, w satisfies the conditions (A1) and (A3). Thus
w is strongly admissible.

A metric space (X, g) is locally hyperconvex if for any x € X there is a
neighborhood U of x in X such that go|U is a hyperconvex metric. Then we
have the following

(2.2) THEOREM. Let (X, g) be a locally hyperconvex metric continuum and
let w be the W hitney map for # = 2X or C(X) which is defined by (*) and the
metric g. Then there exist a positive number t,€(0, w (X)) and a homotopy

h: 0™ 1 ([0, to)) xI >~ ([0, t,))
such that '
(A1) h(A, 1) = A, h(4, 0)€F,(X) for each Aew ([0, to);
(A2 if w(h(A, 1)) >0 for some Aew™'((0, t)) and t€l, then
w(h(A4, s)) <w(h(A,t)) whenever 0 <s <t <1;
(A3) h(ix},t) = {x} for each x€eX and tel.

Proof. Since ¢ is locally hyperconvex, there is a positive number ¢ > 0
such that, for any xeX, ¢|S(x, ¢) is hyperconvex, where

S(x, &) = \yeX| o(x, y) < ¢}.
Also, there are points x;, x,, ..., x, of X such that

X = '91 Int S(x;, &/3).

Since X is an ANR, there is a retraction r: # - F,(X) = X, where % is a
neighborhood of F;(X) in . Let 6 be a positive number such that

(2"+1)6 <¢/3.
Choose a sufficiently small positive number t, €(0, w(X)) such that
(1) if Aew™1([0, to)), then 4 < S(x;, &/3) for some i;
(2) @7 1([0, to)) = %;
(3) if Aew™ ([0, ty)), then S(r(4), é) o A.
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Set

' _ -1

o = {4€0™ ([0, 1)l A =S(x;, ¢/3)},
# = {Aeo™ ([0, o) 4 cIntS(x;, 2/3)} (i=1,2,...,n),
—do = f”o = ®.
Let ¢;: @ '([0,10)) =1 (i=1,2,...,n) be a map such that
4) ¢;(4)=0if Aeo/; and ¢;(4) =1 if 4 is not contained in %,;.
By induction, we shall construct a homotopy
h: o ([0, to)) xI 2w~ !([0,t0)) (=0,1,...,n)
such that
A (i) hi(A, 1) = A for each Aew™ ([0, t,));
B(i) if Ae | .o/;, then h; (4, 0) =r(A4) eF,(X);
j=0
C(i) if Aew™'([0, 19)) and 0 < s <t <1, then
w(h (4, 5)) < w(h(4, 1));

D(i) h(ix},1)= {x] for xeX and tel;

E(i) if w(h(A,s)=w(h(4,1) for some Aew™'([0,1,)) and s, te€l,
then h;(A, s) = h;(A, t);

F(i) h(A4,1) =S(r(A4), 2'5) for each Aew™ ([0, t,)) and t€l.

First, for the case i = 0, define

ho: @™ ([0, to)) x I =™ 1([0, to))

by ho(A, 1) = A for each Aew™ ([0, to)) and t€l. Next, we suppose that
there is a homotopy

hi: ¢~ ([0, to)) x1 -~ ([0, to))
satisfying the conditions A (i)-F (). We shall construct a homotopy
Thier: 0 ([0, t0) xT S0 ([0, o)) |

satisfying the conditions A(i+1)}-F(i+1). If A€%,,,, then (3) implies that
r(A) €S(x;+1,(2¢/3)+46). By F(i), we can see that if A€, ,, then

h(A, 0) = S(x;+1, (28/3)‘*‘5(1‘*'2")) < S(xi+1, 9.
Since ¢|S(x; 44, &) is hyperconvex, by the proof of (2.1) we have a homotopy
Wi h(Bivy x0}) xI _’w-l([O, to))

such that
(5) hiv1(A, 1) = A, hiy (A, 0) =r(A) for each 4 eh;(#;,, x |0));
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(6) if w(hi+y(A, ) >0 for some Aeh;(%;+, x{0}) and t€l, then
0 <w(hi,i(4,5) <o(hii (A4, 1) whenever 0 <s <t<1;
(M) hi+1({x), 1) = {x} for {x}eh;(#;,, x{0}) and t€el.

Also, by the proof of (2.1) we see that

(8) hi+1(A, 1) = S(r(A), 2sup lo(r(A), a)l acA}) for Aech (B, x!0))
and t €l (because in the proof of (2.1) fis a contraction).

Define a homotopy

hivy: @™ ([0, to)) xI =@~ ([0, o))
by

h(A, 2t—1) if Aew ([0, o) and 12<t <1,

— i1 (M (A4,0),2t4+(1-20) ;41 (A if Ae%,
hii (A, 1) = .h-+1( ( ) ( ) @i+ 1 ( )) and BISIQI/L
St <

h;(A,0) if A is not contained in #;,, and 0 <t < 1/2.
By A()-E(i), h., satisfies the conditions A(i+1-E(i+1). By F(i) and (8),
we see that h,,, satisfies the conditions F(i+ 1). Thus we have a homotopy
h = hn: w-l ([0, to)) x 1 _’w_l([o, to))

such that

©) K(A, 1) = A, K(A,0) =r(A)eF,(X) for Aew™*([0, to));

(10) ' ({x},t) = {x} for xeX and t€l;

(11) if w(h'(A, 5)) = w (W (A, 1)) for some Aew '([0, to)) and s, tel,
then H'(A, s) = K (4, ¢).

By (9) and (11), we can define a function

h: @™ ([0, to)) x I = w1 ([O, to))

by
(12) h(A, t) =N (A, (A, 1)), where 6(A4, 1) is a positive number such
that

w(k (4, 0(4,1)) =t o(A).

Then h is continuous. In fact, suppose, on the contrary, that there are a
sequence A;, A,,... of points in w™'([0, ty)) and a sequence ¢, t,, ... of
positive numbers in I such that

limA,=Aew™'([0,t)) and limt¢,=tel
and

limh(A,,t) =B # h(4, t).
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By (12,
w(B) = lim(t, w(4,) = t-w(4) = w(h'(4, 6(4, 1))).
Note that Beh'({A} xI). Hence (11) implies that
B ="h(A,0(4,1)=h(4A,1).

This is a contradiction. Clearly, h satisfies the conditions (A1), (A2) and
(A3). This completes the proof.

3. Whitney maps of certain polyhedra. In this section, we study Whitney
maps of certain polyhedra. Let K be a cubical complex. Metrize |K| as
follows: Assume that each k-dimensional cube of K is a copy of I*. Define
the distance ¢ between two points x, y of |K]| so that if x, y are in a common
cube I* then

e(x, y) =max{x—yl | i=1,2,...,k},
Whel‘e X = (xl, x2, ceey xk), y =(yl’ yz, cevy .Vk) e.’k,

otherwise the distance is the length of the shortest path joining them (see
[9]). Then g is a convex metric. A connected subset Y of |[K| is GC (see [9]) if
for any cube I* of K either YNnI*=@ or for some 0<s; <t; <1 (i
=1,2,...,k)

YOI =y, y2 s V)EM si<yi <t (=1, 2, .., k)}.

A cubical complex K is regular collapsible [9] if there are a sequence of
subcomplexes K,, K, ..., K, of K and nonempty subcomplexes L, of K;
such that K, is a one-point set, K, = K and

K1 =K, u(L; x1),
where
L xI = {cx [0}, cxI, cx{1}] ceL},

and each |Lj| is GC of K;. A cubical complex K is locally regular collapsible
if for any x €|K]| there is a regular collapsible subcomplex L of K such that
x €lnt|L|. .

In [9], Mai and Tang proved that if P is a collapsible simplicial
polyhedron, then there is a regular collapsible cubical complex K such that
|K] = P. Also, they proved that the metric ¢ as above is a hyperconvex
metric. Hence, by (2.1) and the proof of (1.2) (see [6]), we have

(3.1) THEOREM. Let P be a finite collapsible polyhedron. Then there exists
a strongly admissible Whitney map w for # =2F or C(P). Moreover,
w|w™*((0, @(P) is a trivial bundle map with Hilbert cube fibers, where if
H = C(P), assume that P contains no free arc.
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Also, by (2.2) we have

(3.2) THEOREM. Let K be a cubical complex and let |[K|=P. If K is
locally regular collapsible, then there is a Whitney map w for # = 2F or C(P)
such that for some tq €(0, w(P)) there is a homotopy

h: o~ 1 ([0, to)) xI 2w~ ([0, to))

satisfying the conditions (A1), (A2)’ and (A3) in (2.2). Moreover, w|w™'((0, t,))
is a trivial bundle map with P xQ fibers, where if .# = C(P), assume that P
contains no free arc.

Next, we study Whitney maps of 1-dimensional ANRs.

(3.3) LemMA. If X is a compact 1-dimensional AR (= dendrite), then X
admits a hyperconvex metric. If X is a compact connected 1-dimensional ANR,
then X admits a locally hyperconvex metric.

Proof. Suppose that X is a compact 1-dimensional AR. By (2.1) in [4]
we can conclude that if any collection {A;};—;, .., of subcontinua of X
satisfies the condition 4; N A4; # @, then

("\A,-;e(b.
i=1

Since X is a Peano continuum, X admits a convex metric ¢. Then, for any
xeX and £ >0, S(x, ¢) is a subcontinuum of X. Hence we see that ¢ is
hyperconvex. Suppose that X is a compact 1-dimensional ANR. Let ¢ be a
convex metric on X. By (13.6) in [2], there is a positive number ¢ > 0 such
that S(x,e) is a l-dimensional AR for each xeX. Hence o|S(x,¢) is
hyperconvex, which implies that ¢ is a locally hyperconvex metric.

(3.4) LemmAa. If X; (i =1, 2) admits a hyperconvex metric (resp., locally
hyperconvex metric) o;, then X, x X, admits a hyperconvex metric (resp.,
locally hyperconvex metric) o, where

Q(x’ y) = max {Qi(xi’ yl)l X =(x15 xZ)a y =(y15 yZ) and i= la 2}

(3.5) CoroLLARY. Let X; (i=1,2,...,n) be the m(i)-sphere (m(i) = 1)
and let (X,41, 0n+1) be a locally hyperconvex metric continuum. Suppose that

n+1

X= l_[ X,'.
i=1

Then there is a Whitney map w for # = 2* or C(X) such that w|w™*((0, to))
is a trivial bundle map with X xQ fibers for some t,€(0, w(X)).

Outline of proof. Assume that

X; = \x =(xg, Xq, ..., Xmii) ER™ 1| |x]| = 1}.
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We define a metric g; on X; by
m(i)

ai(x, y) = arccos[ Y, x;¥;]
i=0

for
X =(X0s X15 -+s Xmi))s ¥ = (Vo> Y15 --+» Ymai)) € Xi-
Define a metric ¢ on X by
o(x, y) =max{g(x, y) i=1,2,...,n+1)
for

X =(x1’ X2y o0y xn+l)’ y= (yh y2’ seey yn+l)EX-

Let w be the Whitney map for »# which is defined by (») and the metric p.
By the similar way as in the proofs of (2.1) and (2.2), we can conclude that w
satisfies the desired conditions.

In the statements of (2.2), (3.2) and (3.5), we cannot conclude that ¢,
= w(X). We have the following

(3.6) ProrosiTION. Let X be a compact connected ANR but not AR. Let
H = 2% or C(X). If # = C(X), assume that X contains no free arc. Then for
any Whitney map w for S there is no homotopy

h: 0™ ([0, (X)) xI 0™ ([0, 0 (X))
satisfying the conditions (A1)’ and (A2)' in (2.2).

Proof. Suppose, on the contrary, that such a homotopy h exists. Since
H# is homeomorphic to the Hilbert cube Q,

o~ ([0, w(X))) = Q- {*} = @ x[0, 1).
Hence o~ ' ([0, w(X))) is contractible. Let f: o™ ! ([0, »(x))) = F,(X) (= X)
be a map defined by f(4) = h(4, 0) for each Aew™!([0, w(X))) (see (A1)).
Then (A2)' implies that f|F, (X) ~ 1r,(x)- Since X is an ANR, by Borsuk’s
homotopy extension theorem (see [2]), there is a retraction

r: o ([0, @ (X)) = F, (X).

Thus X is contractible, and hence X is an AR (see [2]). This is a contradic-
tion.

(3.7) ExampLE. Let S* be the unit circle in the plane R? and let ¢ be the
arc length metric on S'. Suppose that w is the Whitney map for 25! defined
by (x) and the metric ¢. Then w|w™'((0, n/2)) is a trivial bundle map with
S xQ fibers, but w|w™!((0, n/2]) is not a trivial bundle map; in fact, it is
not an open map. Let 4ew™!([0, n/2)). First, we shall show that
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(3#) there are points r,(A4) and r,(A4) of A such that
e(ri(4),r2(4) <n  and A c[r (4), r(4)],
where if x, yeS!, then

[x, y] = {z€S'| o(x, 2)+e(z, y) = o(x, y)}.

If |A| < 2 (where |A| denotes the cardinality of A), it is easily seen that
(3) is true. Let |A| = 3. Suppose, on the contrary, that (3#) is not true for
some A €w™'([0, n/2)). Choose a point aeA and let a’ be the point of S’
such that g(a, a’) = n. Then A does not contain a’. Let S, and S, denote the
path components of S'—{a, a’}. Choose the point bedA NS, such that
ANnS, c[a, b]. Then there is a point ceANS,, where S, does not contain
a. Note that if xela, b, ¢}, then {x, x’} separates S' between the other two
points {a, b, ¢} — {x}. Then we have

w(A4) = w({a, b, c}) = (1/2) max {g(a, b), ¢(b, ¢), ¢(c, a)}
+(1/4) min {g(a, b), ¢(b, ), ¢(c, a)} > m/2.
This is a contradiction. By (3#) we can easily see that there is a homotopy
h: o™ ([0, n/2)) x I =~ ([0, n/2))
satisfying the conditions (A1), (A2)’ and (A3) in (2.2). Hence w|w™'((0, n/2))
is a trivial bundle map with S! xQ fibers. Let
x=(L,0, x=(=1/232, x=(=1/2,-/3/2)

and let A = |x,, x5, x3). Then w(A4) = n/2. In [5], (4.15), Goodykoontz and
Nadler pointed out the following fact: there is a neighborhood # of A in 25!
such that if Be%, then w(B) > n/2. This implies that w|w™ ' ([0, ©/2]) is not
an open map.

The following problems remain open:

(i) Let X be a compact AR. Is there a strongly admissible Whitney map
for # =2X or C(X)? (see [6], (3.4)). (P 1358)

(ii) Let X be a compact ANR (or polyhedron). Is there a Whitney map
o for # = 2¥ or C(X) such that for some t, €(0, w(X)) there is a homotopy

o ! ([O, to)) xI =>w~ 1 ([0, to))
satisfying the conditiops (A1), (A2) and (A3) in (2.2)? (P 1359)
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