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ON EXACT MODULES
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BY
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Introduction. Let R be a commutative ring with identity and let M
be an R-module. Let (u,, v,) be a pair of elements in B. We say that M
is (u,,v,)-evact if the sequence

7Ry TN 7 e N T
is exact. Let (u, v) be a sequence of pairs (u;,v,), ..., (%,,9,). Then M
is (u, v)-ewvact if M, is (u,, v;)-exact for ¢ =1,2,...,n, where M, = M,

M, = M/[(%4y, ..., %;_,) M. The category of all E-modules we denote by
R-Mod.

In this paper, for a given sequence (u, ) of pairs in R the full sub-
category of R-Mod consisting of all (u, v)-exact R-modules is investigated
under the assumption that R is (u, v)-exact.

For basic examples and preliminary results the reader is referred
to [2].

In Section 1 a homological characterization of (u, v)-modules is
given. We obtain a completion of Lemma 1.4 in [2] and a generalization
of Theorem 1.5 in [2].

In Section 2 we study the structure of (u, v)-exact modules over an
N,-Noetherian ring. Following some ideas of Simson [3]-[6] we prove
that every such module is a directed union of ¥,-generated (u, v)-exact
submodules.

1. A homological characterization of (%, v)-exact modules. We begin
with the following result:

LemMA 1. Let R be (u,, v,)-exact and let M be an R-module. If P is
a projective generator in R-Mod and I is an injective cogenerator ¢n R-Mod,
then for My, = M[u, M and R, = R|u,R the following conditions are equi-
valent:
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(1) M s (uy, v,)-6@act.

(2) Tor®(R,, M) = 0 for n> 1.

(3) Ext}(R,, M) = 0 for n> 1.

(4) Tor®(N, M) ~ Tor?\(N, M,) for n>1 and any R,-module N.

(5) Extz(N, M) ~ Exty (N, M,) for n > 1 and any R,;-module N.

(6) Bxtp(M, I;) =0 for n>1.

(7) Exti(Py, M) =0 for n> 1.

(8) Extg (M4, N) =~ Exty(M, N) for n>1 and any R;-module N.

Proof. The equivalence of conditions (1)-(b) is proved in [2],
Lemma 1.4. It follows that for the injective cogenerator I the complex

I:1 i Ny "1}1- ul:I-—-)...

is exact and, therefore, it is an injective resolution of I, ~ v,I. Hence
Exth(M, I,) ~ H"(Homp(M, I)).

(1) <> (6). If M is (u,, v,)-exact and I is the injective cogenerator,
then the complex Hompg (M, I) is acyclic and Extz(M, I,) = 0 for n > 1.
Conversely, suppose that Extp(M,I,) =0 for n>1. Then the exact
sequence

(*) e —s M M M—-)M—’...

induces the sequence
..—» Homg(M, I)—%> Homp( M, I)—» Homg (M, I)»...,

which is exact because it equals Homp(M,I). Since I is an injective
cogenerator, sequence (*) is exact.

(8) =(6) is clear since, by (1)<>(B), I, is R,-injective.

(1) = (8). Let M be a (u,, v;)-exact module and let N be an E,-module.
If P is a projective resolution of M, then it follows from (5) that P,
= P @R, is a projective resolution of the B,-module M,. Then (8) follows
gince there are isomorphisms

Hompg(P, N) ~Homg, (P, N) and Extg, (Myy N) ~ Ext:(M, N)
for n > 1.

Since equivalence (7)<>(6) can be proved similarly, the proof of the
lemma is complete.

Now we prove the following characterization of exact modules.

THEOREM 1. Let (u,®) be a sequence of Pairs (U, vy), ..., (U, 9,)
in R. If R is (u, v)-exact and M i3 an R-module, then the following condsi-
tions are equivalent:
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(1) M is (u, v)-exact.

(2) Extg(P;, M) =0 for m>0, ¢ =1,2,...,n and a projective
generator P in R-Mod.

(3) Extg(M,I,) =0 for m>0,1=1,2,...,n and an injective
cogenerator I in R-Mod.

Proof. Equivalence (1)<(2) can be proved as equivalence (1)<>(3)
in Theorem 1.6 in [2].

(1)< (3). Suppose that (3) is satisfied and let I be an injective cogen-
erator in R-Mod. Since Extgz(M, I,) = 0, M is (u,, v,)-exact by Lemma 1.
Suppose that M is (4, 94), ...y (Ug_y, v,_;))-exact for a certain k (L < k <n).
By assumption and (8) in Lemma 1,

Ext® (M}, N) ~Extp(M,N) forall 1<i<k
whence
0 = Extg(M, I;,,) ~... ~Exty (M, I;,;,).

Then by Lemma 1 again, M, is a (u,, v;)-exact module.

(1) =>(3). Let M be (u, v)-exact and let I be an injective cogenerator
in R-Mod. By Lemma 1 we have

Ext®(M, I,) ~ Exty (M;, I,) =0,
since I; is R;-injective.
2. Structure of exact modules. We recall that a ring is N,-Noetherian

if each of its ideals is generated by at most Ny-elements [1].

LEMMA 2. Let R be an Ry-Noetherian ring and let M be an Ry-generated
R-module. Then every submodule of M is countably generated.

The lemma follows from Theorem 1 in [1].

The main result of this section is the following

THEOREM 2. Let (u,v) be a sequence of pairs (uy, 01)y ..., (%,, V,)
n R and let R be an N,-Noetherian (u, v)-exvact ring. Then any (u, v)-evact
R-module ¢8 a directed union of Ny-generated (u, v)-emact submodules.

To prove the theorem we need some technical lemmas.

LEMMA 3. Let B be an Ny-Noetherian (u,,v,)-exact ring and let M
be a (4, v1)-exact R-module. Then every countably generated R-submodule K
of M can be embedded into a countably generated (u,, v,)-evact submodule K
of M.

Proof. Let K be a submodule of M generated by elements m,;, ¢ € N,
where N is the set of natural numbers. We now consider the complex
of R-modules

My, 0):— MM 2 M M. .
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and its subcomplex K (u,,?,). By Lemma 2, the R-module Ker(%,|K)
is countably generated. Let {#{},.y be a set of its generators. Since
u o) = 0 for each k € N, there exist elements y{" ¢ M such that v,y{" = 2.
Similarly, if {#"},.y is a set of generators of Ker(v,|K), then there exist
-elements #" such that u,7{’ = z). Let

K, =K+ ) Ry + D Ry.
keN keN

We have a monomorphism K (u,, v,) < K,(%,, v;) such that

(i) if # € KX and u,» = 0, then there exists an element y € K; with
VY = T

(ii) if 2z € K and v,z = 0, then there exists an element 2, € K; with

Continuing this procedure we define countably generated R-submod-
ules K < K, < Ky < ... of M such that the complex K(u,,v,) is exact,

‘where B
K == U K‘ .
ieN

Hence the countably generated R-module K satisfies the required
conditions.

LeEMMA 4. Let M and R be as in Lemma 3. Then every countably gen-
erated submodule K of M can be embedded into a countably generated (u,, v,)-
ewact R-submodule K of M such that w, K = K nu,M.

Proof. Let K be a countably generated submodule of M. First we
observe that 4, X < u,MnX < X for every submodule X of M. Using
Lemma 3 we define by induction a family K, (¢ € N) of countably generated
submodules of M such that

K,c K;< K,,, for each ieXN.

K, are (u,, v,)-exact, K;,nu,M = u,K;. We set

K, =K and K,=K,_,+ Zij" for ¢ >0,
jeN
where {m{",j e N} is a family of elements in M such that y§ = u,m}
(j € N) form a set of generators of K, ,nu, M (Lemma 2). Put

K = UK‘ =gfi.

feN
It is easy to observe that K satisfies the condition of the lemma.

Proof of Theorem 2. Let M be a (u, v)-exact B-module. In order
to prove the theorem it is sufficient to show that every countably gen-
erated submodule of M can be embedded into a countably generated
(u, v)-exact submodule of M. Recall that (u, v) is the sequence of pairs
(Ugy 01)y <oy (U, 0,). We apply induction.
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If » = 1, then the result follows from Lemma 3.

Now assume that » > 1 and put M; = M[u, M. Let K be a count-
ably generated submodule of M. By Lemma 4 there exists a countably
generated (u,, v;)-exact submodule K, of M containing K such that
K,nu,M =u,K,. Let p: M —~> M, denote the natural epimorphism.
Since M, is ((%g, ¥2), ..., (%,, v,))-exact, by our assumption there exists
a countably generated ((us, s), ..., (#,, v,))-exact submodule M{") of M,
such that p,(K,) = M{". Let {z,},.y be a set of elements in M such that
the elements p,(w,) (n € N) generate M{V. By Lemma 4 there exists
a countably generated (u,,?,)-exact submodule K; of M such that
u, K3 = u,MnK,. As previously, there exists a countably generated
(%29 ©3), -..y (ty, v,))-exact submodule M) of M, such that p,(K,) = M.
In such a way we define two chains of countably generated R-modules,

K,cK,cK,c..cK,c...c M
and '
MPesMPc..c M®c...c M,,

such that M is (s, vs), ..., (%,,9,))-exact, u,.K, = u, M nK,, p,(K,) = M,®

and K, is (u,, v,)-exact for each k.
Put

First observe that M, is countably generated and contains K. Further,
M, is (44, v,)-exact and u,MNM, = u, M,. Moreover, since

p(Ky) s MY € py(Ky) s MP < ...,
we have the following isomorphism:

Myfuy, My = MoJu, MNM, ~ L]JVPJ.(Ks) = EJN-M?)-
8€. 8

Hence Myju,M, i8 ((%s,9s), ..., (%,,v,))-exact and, therefore, M,
satisfies the required condition. Thus the theorem is proved.

COROLLARY. Let (u,v) be a sequence of pairs (wy,9;), ..., (%,,,)
tn a commutative ring R. If R is (u, v)-exact Noetherian and every countably
generated (u, v)-exact R-module i3 flat, then R is quass-Frobenius.

For the proof apply Theorem 2 and arguments in the proof of Theo-
rem 2.3 in [2].
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