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TOPOLOGICAL SEMIGROUPS AND KIRK’S QUESTION

BY
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A G-space, in the terminology of Busemann [1], is a metric space M
which is finitely compact (i.e., each bounded and closed subset of M is
compact), metrically convex, and has a unique local prolongation.

In [8] Kirk posed the following question: If f is an isometry of a G-
space M on itself and if some subsequence of {f"(x)!2,, xe M, is bounded,
then is the sequence {f"(x)}>, bounded?

In [2] we have proved that even in a more general situation the answer
to Kirk’s question is positive (namely, such is the case of an arbitrary
nonexpansive mapping f of a finitely compact metric space M into itself). In
this note we shall use some facts on topological semigroups to give an
alternative proof, which covers also the case of positively regular mappings
on locally compact metric spaces. Moreover, we obtain results concerning
positively regular mappings which may be considered as generalizations
of [3].

We shall need here some basic definitions and facts concerning
topological semigroups and positively regular mappings (see [3}-[S] for
details).

A topological semigroup (resp., group) S is called monothetic ([6], § 9) if
there exists an element a€S, called a generator of S, such that the set {a"} ,
(resp, {a"}2 _,) is dense in S. Clearly, each monothetic topological
semigroup (resp., group) is commutative. It is also obvious that each
topological group which is a monothetic topological semigroup is a
monothetic topological group. The following proposition is implied by
Theorem 10 (p. 40) in [7] and Theorem (9.1) in [6]:

ProrosiTION 1. Let S be a locally compact monothetic topological
semigroup and an abstract group. Then S is a compact monothetic topological
group.

Now, let f be a mapping of a metric space M (with a metric d) into itself.
Then f'is called positively regular at a point xe M ([4], cf. also [3]) if for each
& > 0 there exists 6 > 0 such that d(x, y) < d implies d(f"(x), f"(y)) < ¢ for
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each integer n > 0. The mapping f is called positively regular on a set A « M
if it is positively regular at each point of A. If fis positively regular on 4 and
if the number 6 does not depend on xe A, then f is said to be uniformly
positively regular on A. The mapping f is nonexpansive on A if
d(f(x), f(y) <d(x, y) for all x,yeA. Clearly, if f(A)c= A and if f is
nonexpansive on A, then f is uniformly positively regular on 4. On the other
hand, let us prove the following remetrization lemma:

LemMa 1. Suppose f is positively regular on a set A= M and f(A) c A.
Then there exists a metric d, on A inducing the same topology and such that f
is nonexpansive on A with respect to d,.

Proof. For all x, ye A, define d, by
dy (x, y) = min {sggd(f”(x),f"(y)); 1}.

It is easily seen that d, is a metric on the set A and that f is nonexpansive on
A with respect to d,. Moreover, for all x, yeA, d,(x,y) <1 implies
d(x, y) <d,(x, y). Since f is positively regular on A, for each xe A and ¢ > 0
there exists 6 > 0 such that d(x, y) < implies

dy(x, y) < sglgd(f"(x),f"(y)) <e.
Consequently, d, and d are topologically equivalent on A and the proof is
complete.

For xeM, let
O(x)=cl{f*"(x)}2, and K(x)= N O(f"(x).

n=0
It follows from [3], Corollary 28, that if f is uniformly positively regular on
O(x) and if O(x) is complete, then O(x) with the well-defined multiplication

)] y-z=lim " "(x),

i—wo

where {n;} and {m;} are sequences of positive integers such that

y=1imf%() and . z=lim ™)
is a monothetic topological semigroup with f(x) as a generator. Moreover, if
O(x) is compact, then, by Corollary 29 in [3], K(x) with multiplication
defined by (1) is a monothetic topological group and a minimal ideal in O (x).
This together with Lemma 1 yield

ProPOSITION 2. Suppose f is positively regular on O(x) and O(x) is
complete. Then O(x) is a monothetic topological semigroup. Moreover, if O(x)
is compact, then K (x) is a monothetic topological group and a minimal ideal in
0 (x).
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Remark. It should be noted that even though K(x) might be equal to
K (y) for some x, ye M, x # y, their semigroup structures might be different
(cf. the Remark to Proposition 3 below).

As a consequence of [5] we have the following

LEMMA 2. Suppose f is nonexpansive on O(x) and ye K(x). Then

(i) O(y) =K(y) and yeK(y),

(i) £ maps O(y) isometrically onto a dense subset of itself.

Consequently, if O(y) is complete, then f maps O(y) isometrically onto
itself.

Proof. (i) Clearly, K(y) = O(y). By Proposition 1 in [S5] we have
ye K (y). Since K(y) is invariant and closed, we obtain O(y) < K(y).

(ii) By Theorem 1 in [5], the set {f"(y)}=2 is mapped by f isometrically
into itself, hence so is O(y). Since ye O(y), f(O(y)) is dense in O(y) and the
assertion follows.

ProPosITION 3. Suppose f is positively regular on O(x) and O(x) is
complete. If ye K(x), then

(i) O(y) =K(y) and yeK(y),

(i) O(y) is a monothetic topological semigroup and an abstract group.

Proof. (i) follows from Lemma 1 and from (i) of Lemma 2.

(i) Since O(x) is complete, so is O(y). By Proposition 2, O(y) (with
multiplication defined by (1) at the point y!) is a monothetic topological
semigroup. We show that O(y) is an abstract group. Let '

z = lim f" (),
where {n;} is a sequence of positive integers. Observe that
2 t-z=1lim f%(@) for each teO(y).
i—wm
Indeed, let teO(y) and let {m;} be a sequence of positive integers with ¢
= lim f"/(y). Since the multiplication in O(y) is continuous, we have
J*®
t-z = lim (£ (),

and since f is continuous for each integer i, we have

t-f(y) = lim (f™(y)-f*(y) = lim f*(f™(y))

j—o j=®
=" (lmf™ () =1 0)

which implies (2).
Now, setting t = y in (2), we obtain y-z = z. Thus y is the identity of
O(y). To complete the proof, it remains to show that there exists an element
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teO(y) such that t-z=y. By Lemma 1, we may assume that f is
nonexpansive on O(x) and, by (i) of Lemma 2, that f maps O(y)
isometrically onto itself. Thus there exists a sequence |t;} of points of O(y)

such that f"(t;) = y for each integer i. Moreover, for all integers i, j, we have

d(t;, 1) =d(f" @), ) =d( (), £ ().

Hence {t;} is a Cauchy sequence. Since O(y) is complete, there exists ¢
= lim t;. Thus,

i—~o

t-z=lim(-f"(y))
and, by (2), t;-f"(y)=f"(t) =y for each i. Therefore, t-z =y, which
completes the proof.
Remark. Under the assumptions of Proposition 3, K(x)= O(y)
= K (y). Indeed, it suffices to show that K (x) = K(y). Let {n;} be a sequence
of positive integers with y = lim f" (x). If ze K (x), then there exists a strictly

i—w
increasing sequence {m;} of positive integers such that z = limf ™ (x).
. i—aw
Replacing {m;} by a suitable subsequence, we may assume that m;—n; > 1 for
each integer i. By Lemma 1, we may also assume that f is nonexpansive on

O(x). Consequently, for each integer i we have

d(z, fM " (y) < d(z, fM ) +d (M), ™" (y)
<d(z, fM(x)+d(f"(x), y)-

This shows that z = lim /" "(y), whence ze K (y). However, this fact is not
i—w

needed in this note.
It is easily seen that if xe O(x), then xe K(x). Thus Proposition 3 yields

CoRrOLLARY 1. Under the assumptions of Proposition 3, if xe O(x), then
O(x) = K(x) is a monothetic topological semigroup and an abstract group.

We may now prove the following

THEOREM 1. Suppose f is positively regular on O(x) and O(x) is locally
compact and complete. If K(x) # @ (i.e, if the sequence {f"(x)};o has
a convergent subsequence), then

(i) O(x) is a compact monothetic topological semigroup,

(ii) K(x) is a compact monothetic topological group and a minimal ideal in
0 (x).

Proof. In view of Proposition 2 it suffices to prove that O(x) is
compact. Let ye K(x). By Proposition 3, O(y) = K(y), yeK(y), and O(y) is
a monothetic topological semigroup and an abstract group. Since O(x) is
locally compact, so is O(y). Thus, it follows from Proposition 1 that O(y) is
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compact. Therefore, there exists a number r > 0- such that the set
U=1{ze0(x): d(0(y),z)<r}

is a compact neighbourhood of O(y) in O(x). Moreover, by Lemma 1, we
may assume that f is nonexpansive on O(x), and hence that f(U) < U. Since
yeK(x) n U, there exists a positive integer n such that f"(x)eU. Thus
O(f"(x)) = U. Hence O(f"(x)) is compact, and therefore so is

0(x) ={f(x),.... f"(x)} L O(f"(x)).

This completes the proof.
As an immediate consequence of (i) of Theorem 1, we have

CoROLLARY 2. Under the assumptions of Theorem 1, the sequence
{f"(x)} X o is bounded.

Clearly, each bounded sequence of points of a finitely compact set has
a convergent subsequence. Thus, Theorem 1 implies (cf. the question of
Kirk [8])

CoRroLLARY 3. Suppose f is positively regular on O(x) and O(x) is finitely
compact. If the sequence {f"(x)};>o has a bounded subsequence, then O(x) is
compact, and hence bounded.

In the case of connected finitely compact metric spaces, we get (note that
G-spaces are connected and finitely compact)

THEOREM 2. Let f be a positively regular mapping of a connected finitely
compact metric space M into itself. Suppose there exists a_point ye M such
that the sequence {f"(y)}% o has a bounded subsequence. Then, for each xe M,
O(x) is compact, and hence the sequence {f"(x)}%, is bounded.

Outline of the proof. By Corollary 3, {f"(y)}X, is bounded.
Observe that if f is nonexpansive, then for each xe M

diam, ({f" (x)}a2 o) < diamy ({f"(»)}az o)+ 24 (x, y),

and so {f"(x)};z, is bounded. Thus the proof will be completed if we
construct a new metric d, on M such that

(a) f is nonexpansive on M with respect to d,,

(b) for each xeM, diam, ({f"(x)}Z o) = diam,({f"(x)}5= o)

Define d, by

do(x, y) = sggd(f"(x),f"(y)) for x, yeM.

It follows from the proof of Lemma 1 that each point of M has a
neighbourhood on which d, is finite. Since M is connected and d, satisfies
the triangle inequality, d,, is finite on the whole space M. Thus d, is a metric
on M and we infer that d, satisfies both the conditions (a) and (b).
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