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1. Imtroduction. The classical form of the Sturm-Picone theorem
compares equations

(1) (az') +ex =0 (¢
(2) (Au')’ +Cu =0 (¢

)y
)s

where a, A,and ¢,C are functions of classes C' and C°, respectively.
Let the inequalities a < 4 and ¢ > C be true on [¢,,?;] = (0, o). Then
if any solution of (2) has two (or more) zeros on [i,, ¢,], then every solution
of (1) also has at least one zero on [,, ¢;]. (By a solution we mean a classical
solution.)

Generalizations exist with replacing these inequalities by certain
averages of the functions 4, a, C, c.

In this note we pursue a related topic. Can 4 >a and C < ¢ be re-
placed by Ap > a and Op < ¢ for a suitable class of functions ¢ € C'[t,, 1,12
In particular, for what class of functions ¢ (p € (?) is the following the-
orem truet

If (2) has two zeros on [1,, t;], then (1) will have at least one zero on [t,, t,]
whenever A = ap and O = co.

This note does not offer a characterization of such a class of functions,
and only a partial answer is given.

Theorems 1-3 in Section 2 are of local character, specifically deter-
mining existence or non-existence of zeros on a fixed interval [¢,,t,].
Global oscillation — non-oscillation theorems can be deduced as corol-
laries to Theorems 1-3. We comment that Kummer’s transformation [3]
could be used in the arguments given in this paper, offering an alternative
method of proof.
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2. Main theorems and an example of application. The oscillatory
behavior of solutions of the equation

(3) (a@)2) +e(t)z =0, >4,
is compared with that of solutions of
(4) (ap®w) +e®p)u =0, t>1, g0t ).

First we prove a Sturm-type theorem concerning the existence of
zeros on an interval [{,, t].

THEOREM 1. Suppose that there exists a solution 4i(t) of equation (4)
which has no zerogs on [t,%,]. If a(t)ep(t) > 0 on [t,,1,] and (ag’)’ < 0 but
(ag’) # 0 on [t,, t,], then any solution £(t) of (3) can have at most one zero
on [ty ts] (7).

Proof. Suppose that there exists a solution #(#) of (3) which has
zeros at t = 7, and ¢ = 7, on the interval [¢,, #,]. Assume without loss of
generality that £#(f) > 0 on (7,, ;). Consider the integral

[ (a2 at,

which is clearly equal to zero. However,
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Since (a¢’)’ < 0 on [i,, t,] and (a¢’)’ # 0, we have

(5) [ [(ag)(&)* — (cp)£*1di < 0.

Hence there exists a function #£(t) € C'[f,,?,] vanishing at ¢ ={,
and t = t, and satisfying inequality (5). An application of Leighton’s
variational theorem (see [4]) shows that every solution w(t) of (4) has
a zero on [t,, ¢;]. This is a contradiction which proves the theorem.

() This statement is the best possible.
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An obvious corollary states that if (4) is non-oscillatory, then so is (3).
THEOREM 2. Subject to the same hypothesis, any solution of (4) has
a zero on any interval containing two zeros of (3).

Proof. Suppose to the contrary that a solution of (4) has no zeros
on such an interval. Now an application of Theorem 1 results in a contra-
diction.

Additional corollaries can be obtained by combining this result with
the main theorem of [2].

THEOREM 3. Suppose that a solution £(t) of the equation
(6) (a®)a’) +e(t)z = g(O)f (@), 1> 1,

has zeros at t =t,>1 and t =t,>1t, >1,. We assume that £f(&) > 0

if £ #0, feC(— o0, + ), g€ L,[t,, o) locally. If there exists a function

¢(2) € O'[ty, 1,] such that a(t)p(t) > 0, (ag’)’ <0, gp >0, gg € L, (locally),

with either (a@’)’ or g mot vanishing identically on [t,,1%,], and if A < ag

and C = cp on [1,,t,], then any solutton of (2) will have a zero on [t,,1,].
Proof. Following the argument of Theorem 1 we have

l‘l

ty Ly i
Y — __]_' ne g a na__ 2
0 =‘! (apdd’)' dt = 2 f [(ag') & ngaqf(:ﬁ)]dt+“f [ap(£')2 —cpd?]dt.
Hence
[ [(ag)(#)2—(cp)d21dt < 0.
h

The remainder of the argument is as before.

I comment that this idea of proof occurred to me after reading the
proof of Theorem 1 of [1].

COROLLARY 1. If (subject to the same hypothesis) amy solution of (2)
has mo zeros on the interval [t,, 1], then any solution of (6) will have at most
one zero on [i,,1,].

Comment. If the condition “zf(z) > 0 if # # 0” is replaced by
“pf(r) < 0 if ¢ # 0”, then Theorem 3 remains true whenever g > 0
is also replaced by the condition g¢ < 0, the remaining hypothesis being
unchanged.

Examples. (a) Any solution of the equation
(sint-u’)’ + K*sint-uw = 0, K > 2,

has a zero on the interval [0, =].
To prove this statement we compare it with 2" + K*>z = 0, which
has solutions containing two zeros on [0+, n—¢] for a sufficiently
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small ¢ > 0. Here a =1, ¢ = K*, and ¢ = gint. The expression (ag’)’
= —gin¢ is negative on [¢, n —¢] while ap = gint is positive. Now, The-
orem 2 states that every solution of this equation has a zero on [¢, ©—¢],
hence on [0, =].

(b) Consider the equations

w 4u=0
and

(7) a:"+ (w z3sint) = 0.

Equation (7) can be rewritten as
(22') +x = x3sint,

i.e. we identify a =2, ¢ =1, g = sin{, and f(x) = 2% We claim that any
solution of (7) can have at most one zero on the interval [=/3, /2]. We
check the hypothesis of Theorem 3 after choosing ¢(f) = sint.

We have

ap =28int>1 =4, cp =sini<1l =0, (ap) = —28i0t<0,
ge = 8in? >0, azf(z) =a*>0 if z #0.

Hence Corollary 1 is applicable, since there exists a solution of
'’ 4+ = 0 having no zeros on [x/3, =/2].
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