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ON ATOMIC MAPPINGS
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A continuum means in this paper a compact connected Hausdorff
space. A continuous map f: X — Y is said to be monotone provided the
preimage under f of any point of Y is connected. It is known (e. g., [6],
p. 123) that f is monotone iff the preimage under f of any subcontinuum

of Y is connected. In Cook’s paper [3] a continuous map f: X 222, y
is called preatomic iff, for each subcontinuum K of X such that f(K) is
non-degenerate (i. e., containing more than one point), there is f“( f(K)

= K; a continuous map f: X 2%, ¥ is said to be afomic provided
it is preatomic and monotone. The notion of atomic continuous (and
open) maps was introduced by Anderson [1] and was applied by Anderson
and Choquet [2] and by Cook [3] to constructions of some singular continua.
We shall prove that the two notions, of atomic and of preatomic contin-
uous maps of continua, are equivalent and we shall discuss the problem
of characterization of those continua X for which each atomic map

f: X 22, Y, where Y is Hausdorff, is a homeomorphism. For instance,
we shall show that all arewise connected continua, as well as all aposyndetic
continua, have this property. Another theorem gives a characterization
of hereditarily indecomposable continua in terms of atomic maps.

1. Preliminaries. Throughout this paper all maps are assumed to
be continuous and all spaces are assumed to be Hausdorff.

THEOREM 1. Let X be a continuum. If f: X 225 Y is preatomic, then
it is atomic.

Proof. It suffices to prove the monotoneity of f. Let ye Y. Let M
and N denote closed subsets of f~'(y) such that f~'(y) = M U N,
M NN =0and M 0. Since X is normal, there exist subsets U and V
of X such that M c U, Nc V and UNV =0. Let e M and let K
denote the component of U containing z. From Janiszewski’s Lemma
(cf. [6], p. 112) it follows that K N Fr U # 0. Let z¢ K N Fr(U). Since
UNV =0 and Fr(U) = U— U, we infer that z¢ f~'(y). Hence f(K) is
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non-degenerate and, therefore, f"l( f(K)) = K. Since y = f(z)e f(K), we
have M UN =f(yyc K< U. Thus Nc K and N n K = 0. Hence
N = 0, and, therefore, f~!(y) is connected.

A subset C of X is said to be a semi-continuum provided for each
two points a and b of C there is a subcontinuum K of X containing a and
b and such that K < C.

THEOREM 2. Let f be an atomic map from X onto Y. If C is a semi-
-continuum of X such that f(C) is non-degenerate, then f~*(f(C)) = C.

Proof. Let yef(C). Since f(C) is non-degenerate, there exist two
points 2 and 2 of C such that ¥y = f(x) # f(2). Let K be a subcontinuum
of X containing « and 2 and such that K < C. Then f(K) is a non-degener-
ate subcontinuum of Y and (since f is atomie) f~*(y) = f~(f(K)) = K < C.
Hence f~!(f(C)) = C and, in virtue of C = f~*(f(0)), we get f~*(f(C)) = C.

THEOREM 3. A map f: X222, Y is atomic iff for each ye Y and each
semi-continuum C of X, provided C N f~(y) #0 and C N (X — f“(y)) # 0,
then f~'(y) = C.

Proof. 1. Let the map f be atomic and ye Y. If C is a semi-continuum
of X such that C Nnf~'(y) 0 and C N (X—f"'(y)) # 0, then f(0) is
non-degenerate and, therefore, by Theorem 2, f'l( f(C)) = (. Since
yef(C), we get f~'(y) = C.

2. Let K be a subcontinuum of X such that f(K) is non-degenerate.
Let zef~'(f(K)). Since f(x)e f(K), we infer that f~(f(#)) N K # 0 and
Kn{X—fY f(w))) # 0. Being a continuum, K is a semi-continuum,
hence zef~*(f(x)) = K; then from K < f~(f(K)) we get f~(f(K)) = K.
Thus f is atomic.

COROLLARY 1. Amap f: X > Y 18 atomic iff, for each semi-continuum
C of X, there is C < f'(y) for a ye Y or C = U{f(y): ye M} for some
subset M of Y.

Proof. 1. Let C be a semi-continuum of X and M = {ye ¥: ~'(y) n
N C # 0}. If M = {y}, then C = f~'(y). If M contains at least two points,
then from Theorem 3 it follows that we have f~'(y) = O for each ye M.
This implies that U {f~'(¥): ye M} = C. Thus from C < U {f*(y):
ye M} we get C = U {f'(y): ye M}.

2. Let C be a semi-continuum of X such that C Nnf~'(y) 0 and
C N (X—f"'(y) #0. Then, by hypothesis, we infer that f'(y) < C.
Hence, by Theorem 3, we conclude that f is atomic.

COROLLARY 2. There exists an atomic map f of continuum X onto a non-
-degenerate Y iff there exists an upper semi-continuous monotone decompo-
sition 9 of X such that

(i) for each semi-continuum C of X, we have C = K for a K from 9D
or C = 2, where 9’ = 9.

onto
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Proof. If the map f is atomic, then, by Corollary 1, the decomposition
{f~'(y): ye Y} satisfies (i) and it is upper semi-continuous (this follows
eagily from the fact that f is closed). If there exists an upper semi-contin-
uous decomposition 2 which satisfies (i), then the corresponding quotient
map is continuous and, by Corollary 1, atomic.

COROLLARY 3. Let f be an atomic map from a continuum X onto a non-
~degenerate Y. Let ye Y and let K be a component of X — f~*(y). Then
f Y y) =« K and Intgf '(y) =0 (hence Intxf'(y) = 0).

Proof. From the hypothesis and Janiszewski’s Lemma (cf. [6],
p. 112) it follows that K N Fr(X—f~'(y)) # 0. Since X —f~'(y) is an
open subset of X, we get Fr(X—f"'(y)) = f~(y). Hence f~(y) N K # 0
and (X—f"'(y)) n K # 0. From Theorem 3 we infer that f~(y) = K.
Since f~!(y) N K = 0, we have f~!(y) = Fr(K) in K and Intzf '(y) = 0.

COROLLARY 4. Let f be an atomic map from a continuum X onto a non-
-degenerate Y. Let B < f~'(y) and B # f~'(y). Then X — B is connected.

Proof. Let K be a component of X —f~(y). Since K <« K n (X — B)
c K, we infer that K n (X —B) is connected. From Corollary 3 it follows
that f~}(y)—B < K. This implies that the set | J {K N (X—B): K is
a component of X —f~!(y)} is equal to X — B and that it is connected.
Thus X —B is connected.

The fact that if f is an atomic map from X onto Y and K is a subcon-
tinuum of X such that f(K) is non-degenerate, then f | K: K 2225 f(K)
is an atomic map, implies the following two corollaries:

-COROLLARY b. Let f be an atomic map from a continuum X onto a non-
-degenerate Y. Let ye Y and S be a subcontinuum of X such that f(8) is
non-degenerate and y « f(8). If K is a component of 8 — f~(y), then f~*(y) = K
and Intgf~'(y) = 0.

COROLLARY 6. Let the hypotheses of Corollary 4 hold. If K i3 a sub-
continuum of X such that f(K) i8 non-degenerate, then K — B i3 connected.

2. A characterization of hereditarily indecomposable continua. We
shall use the following result: a continuum X is hereditarily indecomposable
iff for each two subcontinua K, and K, of X such that K, n K; #0
and K, ¢ K, there is K, c K,.

THEOREM 4. A continuum X is hereditarily indecomposable iff each
continuous and monotone map from X is atomic.

Proof. 1. Let X be a hereditarily indecomposable continuum and
let a map f from X be continuous and monotone. Let K be a subcontinuum
of X such that f(K) is non-degenerate. Since M = {y: f~'(y) N K +# 0}
is non-degenerate, we have K ¢ f~!(y) for every ye M, and since X is
hereditarily indecomposable, there is f~'(y) < K. This implies that
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FHAE) =U{f®): ye M} c K and K = f7(f(K)).

Hence f is atomic.
2. Let K, and K, be subcontinua of X such that K, n K, % 0 and

K, ¢+ K,. Let 2 be a decomposition of X consisting of K, and single
points of X — K,. The quotient map f from X onto 2 is continuous and
monotone. This implies that f is atomic. Since f(K,) is non-degenerate

and f(K,) < f(K,), we get
K, = f(f(K) = f(f(K,)) = K,.

Hence K, = K,. Therefore, according to the result quoted above,
the continuum X is hereditarily indecomposable.

3. Some cases where atomic maps are homeomeorphisms. If f is a homeo-
morphism, then clearly f is atomic. There are simple examples of atomie
maps which are not homeomorphisms. For example, let X be “the
gin ™! curve” and let f be a projection from X onto x-axis. We see that f
is atomic.

A continuum X is aposyndetic at x with respect to y, y # « (a notion
of Jones, cf. [4] and [b]), provided there exists a subcontinuum of X
containing x in its interior and not containing y. A continuum X is aposyn-
detic iff for each xe X it is aposyndetic at  with respect to every point
of X,

THEOREM 5. If f is an atomic map from an aposyndetic continuum X
onto a mon-degenerate Y, then it i8 a homeomorphism.

Proof. Let ye Y,2ef '(y) and z¢ X be such that z # x. There is
a subcontinuum K of X containing « in its interior and not containing z.
It follows from Corollary 3 that f(K) is non-degenerate. Since f is atomic,
we infer that f~'(f(K)) = K. Hence z¢f '(y). Since z is an arbitrary
point different from z, we get f~*(y) = {x}, and, therefore, f is a homeomor-
phism.

Since locally connected confinua are obviously aposyndetic, we
get

COROLLARY 7. If a map from a locally conmected continuum X onto
a non-degenerate Y is atomic, then it i8¢ a homeomorphism.

A subset B of continuum X is said to be arcwise connected in X iff
for each two distinct points a, b of B there exists a continuum K < B
and a homeomorphism h: [0,1] 222> K such that a, be K and h(0)
=0,h(1) =b.

THEOREM 6. Let P be a covering of X by arcwise connected subsets of
X. If f is an atomic map of X onto mon-degenerate continuum Y, then for
each point ye Y the set f~1(y) is either degenerate or f~'(y) = U, where
#' iz a subfamily of 2.
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Proof. Let ¥ be a point of Y and let .# be a subfamily of £ consisting
of those elements which meet f~(y). It is sufficient to prove that (.
c f~Y(y) if f~'(y) is non-degenerate. Let Be .#. Suppose that B—f~!(y)
# 0. Then there exist two distinet points, # in f~'(y) "B and # in

B—f"'(y), a continuum K, and a homeomorphism &: [0, 1]-2225> K such
that h(0) = 2, h(1) = 2. Let te [0,1] be such that h(t)ef '(y) and ¢’ < ¢
implies h(¢')¢f *(y). Let b = h(t). Then K' = h([0,?]) is a continuum
such that K' nf~'(y) # 0 and K’ n (X —f~!(y)) # 0, whence f~'(y) = K.
Since f~!(y) N K’ = {b}, we have f~!(y) = {b} so that f~'(y) is degenerate.

COROLLARY 8. If f is an atomic map of a continuum X onto Y and B
18 an arcwise connected subset of X, then either f | B: B onto, f(B) is one-to-one
map or f(B) ts degenerate.

Proof. If f| B is not one-to-one, then there exists a point y of f(B)
such that (f|B) '(y) is non-degenerate and from Theorem 6 we get
B = f7(y).

COROLLARY 9. If f i3 an atomic map of an arcwise connected continuum
X onto a non-degenerate Y, then f is a homeomorphism.

Proof. Since X is arcwise connected and f(X) is non-degenerate,
we infer from Corollary 8 that f~'(y) is degenerate.

Example 1. There exists a continuum X which is not arcwise connect-
ed and such that

(*) if f is an atomic map of X onto a non-degenerate Y, then f is
a homeomorphism.

Namely, let X be the subset of the plane E* to which (z, ) belongs
iff either y = sin2™' for ze¢(0,1] or # =0 and ye[—1,2], with the
topology induced from the plane E* Clearly, X is not arcwise connected.
Property (*) follows from Theorem 6.

Example 2. It follows from Theorem 6 that each atomic map of
Brouwer’s indecomposable continuum (cf. [6], p. 143) onto a non-degenerate
continuum Y is a homeomorphism.

4. The irreducibility of atomic maps. Let us begin with

THEOREM 7. If f is an atomic map of a continuum X onto a non-degenerate
Y, then for each proper subcontinuum K of X there is f(K) # Y ; in the
other words, f s irreducible with respect to subcontinua.

Proof. Let K be a subcontinuum of X such that f(K) = Y. Since Y
is non-degenerate, K = f!(f(K)) =f"(¥) = X.

There exist easy examples of maps which are irreducible in the usual
sense (i. e., with respect to closed subsets) but which are not atomic.
For example, let X be the subset of the plane E? to which (z, y) belongs
iff either y = sina™" for 2¢(0,1] or # = 0 and ye[—1,1] or ¥ = 0 and
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xe [ —1, 0), with the topology induced from the plane B, Let ¥ = [—1, 1]

and let f: X oo, ¥ be the projection onto z-axis. By Theorem 6, f is

not atomic.
On the other hand, we shall show that there exist atomic maps which
are not irreducible.

Example 3. Let X be a hereditarily indecomposable continuum
and W # 0 be an open subset of X such that W # X. Let F be a decom-
position of X consisting of the components of W and single points of
X —W. Then F is upper semi-continuous and the quotient map is contin-
uous and monotone; hence we infer from Theorem 4 that f is atomie.
But from Janiszewski’s Lemma (cf. [6], p. 112), for each component K
of W, there is KN (W—W) = K nFr(W) #0; hence f(X—W) = Y.
Since X —W is closed, f is not irreducible.

THEOREM 8. If f i8 a map of an indecomposable continuum X onto
a non-degenerate Y, which s monotone and trreducible with respect to continua,
and if K, 18 a composant of a point x of X, then f(K,) i8¢ a composant of
J(z) in Y.

Proof. Let K, = X be a composant of z in X. Let y be a point of
f(K.). Then there exists a point 2z of K, such that f(2) = y. Hence, there
exists a continuum K, such that K,,c K ,2e K,,,2¢ K, K,, # X.
Since ye f(K,,), f(x)e f(K,) and f(K,,) #* Y (f is irreducible with respect
to continua), we have ye Ky, hence f(K;) = K;,. We shall show that
if K, and K,, are distinct composants, then K,,, and K., are also
two distinet composants. Suppose Ky, , = Ky, . Then there exists
a subcontinuum K of Y such that f(x,)e K and f(z;)e K and K # Y.
Then z,e f~!(K), z,¢ f~*(K) and f~!(K) # X, where f~!(K) is a continuum
(f is monotone). Hence K, = K, . Since f is a map onto ¥, we have
f(K,) = Kpy.

CorOLLARY 10. If f is @ monotone map of a hereditarily indecomposable
continuum X onto a non-degenerate Y and if K, 18 a composant of ¢ tn X,
then f(K,) t8 a composani of f(x) in Y.
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