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0. Introduction. In looking for classes of uniform spaces similar to
proximity spaces, one might proceed as follows. Two subsets 4 and B
of a uniform space fail to be proximal iff {4, B} is uniformly discrete.
Thus the proximity structure (J-structure) of a uniform space is determined
by its finite uniformly discrete families. Analogously, one may define
the 4-structure Au of uX to consist of all uniformly discrete families of uX.

The category of A-spaces so obtained is isomorphic with the reflexive
closure (in the category of uniform spaces) of the class of all finite-dimen-
sional uniform spaces. On the other hand, 4-spaces can be defined via
a formal axiomatization similar to that given for proximity spaces. Some
basic properties of A-spaces are given, along with results comparing
é-spaces with A4-spaces.

1. Finite dimensionality. When not otherwise indicated, the notation
here is like that in Isbell [2]. It will be convenient to consider a uniform
space uX as consisting of a set X together with a Tukey uniformity
u on X,

Definition 1. A A-space is a set X together with a collection A4*pu
consisting of all uniformly discrete families of subsets of a uniform
space uX. A* is the mapping uX+—> A*uX. A A*-function is a function
f: A*uX—>4*Y such that V¥ ed*y, {f1[V]: Ve ¥}ed*u.

By a discrete family we shall always mean a uniformly discrete family.
A collection 2 refines a collection 2 if VPe?, 31Q¢2; P < Q. A cover
% of a set X has dimension n if

A0,y ...y Upe%; Ugn...0 U, #0O
and
VVo ooy Vap1€%; Von...nV,y, = 9.

For any uniform space X, a collection 2 is a strict shrinking of a col-
lection 2 of subsets of X if there is a 1-1 map 4: 22 and a # eu such
that VQe2, w *Q < A(Q).
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We shall repeatedly need the following facts about a uniform space
from Isbell [2]. Every uniform covering has a uniform strict shrinking
(Proposition 19, p. 65). Every n-dimensional uniform cover has a uniform
star refinement of dimension not greater than n (this is a direct conse-
quence of Corollary 12, p. 62). Every n-dimensional uniform cover has
a uniform refinement which is the union of »+1 discrete families (by
Proposition 25, p. 67).

Definition 2. A uniform space is a 4-uniform space if its uniformity
has a base of finite-dimensional covers.

THEOREM 1. (a) For each uniform space uX, the set of all zero- and
one-dimensional uniform covers is a subbase for a wuniformity Au.

(b) The finite-dimensional covers of u form a base for Au.

(c) The map uX+> AuX is a reflection onto the subcategory of A-uni-
form spaces.

(d) The class of A-uniform spaces is the reflexive closure of all fimite-
-dimensional uniform spaces.

Proof. (a) Let uX be a uniform space. Let g be the set of all zero-
and one-dimensional uniform covers of uX. Using induction, we see that
each #,¢p is the largest element in some nested sequence of star refine-
ments in . So B is the union of a set of countable bases for zero- and one-
-dimensional uniformities, and whence it is a subbase for a subproduct
of one-dimensional uniform spaces.

(b) It is clear that Au has a base of finite-dimensional covers. But
suppose # is any n-dimensional uniform cover of uX; we need to show
that # < Au. Let ¥~ be a uniform refinement of # which is the union of
n +1 discrete families 2,,...,2,. Let # be a strict shrinking of 7";
then #  is, clearly, also the union of n+1 discrete families 2,,...,2,,
with each 2, a strict shrinking of #;. For each ¢, let

g" = -‘?‘U lX—U.@‘};

%, is, obviously, a uniform cover of X which is (at most) one-dimensional.
Then ZyN ... N %, is a refinement of ¥7, and, therefore, of %, since

(X=U2)n...0(X-U2,) =9.

Hence e du.

(¢) To see that the map uX > AuX is a reflection, we need to show
that, for any uniform spaces uX and »Y, a function f: uX—>4vY is uni-
formly continuous iff f: AuX—>AvY is. But this follows directly from
the fact that the inverse image of a one-dimensional cover is at most
one-dimensional,
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(d) Suppose 4 is any reflector which is the identity on finite-dimen-
sional uniform spaces. Then, given uX and any finite-dimensional uni-
formity » = u, the following diagram of identity maps must commute:

uX > AuX
l v
v X v X

Consequently, Vu, Au 2 Au. But then Vu, Adu=2 A4 = Au=2 Adp.
This shows (d).

THEOREM 2. The map A*: AuX— A* AuX = A*uX is an isomor-
phism from the category of A-umiform spaces onto the category of A-spaces.

Proof. First, we show that 4* is onto. It suffices to prove that,
for any uniformity u, 4*u = A* Au. Since u 2 Au, we have A*u = 4* Ap.
On the other hand, suppose /e A*u; pick eu so that # » o is disjoint.
Let

¥V =Uxd v {X—- ¥}

Then ¥ is uniform since it is refined by #. Now, ¥ edu, and
¥ x o = Uxs/ is disjoint. Hence o «4* Apu.

Next, we show that A4* is 1-1. Given 4*uX, we must be able to
determine what 4duX was. Let I' be the collection of all families of the
form 2u{X —J#)}, where & refines 2, and 2 and #u |{X —(J2} belong
to A*uX. It suffices to show that I" is a subbase for Au.

First, we show that each element of I' is a zero- or one-dimensional
u-uniform cover of X. Indeed, let 2u {X — U2} be a typical element of
I'; it obviously covers X and is at most one-dimensional. To see
20 {X — 2} is uniform, let % ¢x be such that # 2 and % = [#u {X — U 2}]
are disjoint. Pick Ue#. If Un{JU? =0, then U c X-—-U2.
Otherwise, U meets some Pe¢Z?, and whence some @ ¢2. But then U meets.
only that element of 2 since % » 2 is disjoint; U fails to meet X —(_J 2 since.
|20 {X—J2}]| is disjoint; hence U < Q. Consequently, # refines
20{x -2}

Second, to see that I' does generate Au, let  be a one-dimensional
cover in Au. As in the previous proof, we let Z U 2’ e Au be a refinement
of % such that # and 2’ are discrete, and let 2 U.2"¢ Au be a strict shrinking
of ZuZ’, with 2 and 2’ strict shrinkings of # and #’, respectively; so
that

(2u{X-U2}n (#v{x-U2}

is a uniform refinement of  which is the intersection of two elements
of I
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It remains to show that a function f: AuX—A4+Y is uniformly con-
tinuous iff f: 4*uX—>A*vY is a A-function. If f is uniformly continuous,
then, of course, the inverse image of any discrete family is discrete.
Conversely, if f is a 4-map, and I','and I, are subbases like the one con-
structed above, then the inverse image of each element of I, is, clearly,
in I',; hence f is uniformly continuous.

Remark 1. One would guess that results for finite-dimensional
uniform spaces tend to carry over to 4-spaces. One such example is that,
for any A4-uniformity u, 4dduy = ddu. This is shown in the proof of Isbell’s
Theorem V.5, p. 79 of [2].

2. Axiomatic characterization. The purpose of the following discussion
is to find a characterization of A-spaces in terms of properties which
are simple and intuitively reasonable. Of the following, (4) is perhaps
least expected; however, some such condition seems necessary.

THEOREM 3. A collection n of disjoint families of subsets of X 18
a A-structure iff it satisfies the following conditions:

(1) Qen; if A = X, then {A}en.
(2) If o, Ben, then
ANB ={ANB: Ae o, BeRB}en.
(3) If Len and y i8 a partition of <, then
LNy = [U : gey}e’q.
(4) If 4\ M, LI N,{M—N,N—M}en, then | M U Nen.

(8) If oLem, then there is a Ben such that {\J o, X —JRB}en and
& 18 a 1-1 refinement of #, in the sense that B & = .

Before giving a proof we will need a definition and a lemma.
Definition 3. For any family «, let
[#] =U{4d xB: A,Bes, and A # B}.
LEMMA 1. If 7 98 a collection of disjoint families of subsets of X, then
conditions (1)-(4) are equivalent to
(6) If I' i3 a finite subset of n and [ ] < U{[g’] Pel'}, then A e,
Proof. Flrst suppose (6) is true.
(1) 9] =9, and if A < X, then [{4}] = @; but
VI cq, @ < U{[P): Pel}.
(2) If o/, Ben, then [ A RB] = [F]U[ZB].
(3) If «7en and y is a partition of «/, then [« |y] = [¥].
(4) ¥ M,N c X, and & ||M, & |N,{M—N,N—M}ey, then

[Z| MUN] < [« M]JU[L|NJU[{M—N,N—-M}].
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Now suppose conditions (1)-(4) hold.

(I ¥ o, {U #}uBen, then o U Ben.

Indeed, if o, {{U «} U Ben, then {{U «, U #}en, by (3) and the
fact that (& and |J # are disjoint. By (1) and (2),

B =({U ) uB)A{U B}en.
Hence, by (4), & U Zen.
(IT) I # is a finite collection of subsets of X and VA, Be#,
|A U Ben, then | Fen. Indeed, if # =@, then, by (1), #| U F
= B en. Suppose the statement is true whenever & has n elements. Let

F have n-+1 elements F,,...,F,, and let VA, Be#, /|4 U Be #.
Then, by hypothesis,

leoU-on UF"_].G’? aﬂnd MIFIU"' UFnET].
Let

M=UfgLNn(Fouv...0F,;)) and N=UJLNn(F,u...uF,).
Now, «|(#, v F,)en, and thus, by (1) and (2),
| MAN = A|(Fyu F,) A {MAN}en,

80 that, by (3), {M — N, N—-M}en. Hence, by (4), &|Fyu... U F,en.
If I' is empty, the hypothesis of (6) reduces to [ /] = @, in which
case </ has at most one element, and thus, by (1), belongs to .
Next, suppose that [ /] < [#?] and ZPen; then 7. Indeed, if o
‘has at most one element, then, by (1), &e%. So assume 2 has more than
one element, in which case [«/] < [#] implies | & = {J 2. Also,

2lU & =AU #len and [&] c[2|U #],
80 we can assume that (J Z = |J &. For each Ae¢ &, let
Y, ={Pe?; PN A # 03},

Notice that each PeZ meets at most one element of ./ since
[#] = [2]; hence it is contained in some element of < since | JZ = | «.
‘Consequently, y= {#,: Ae &/} is a partition of # and VAe &, | ) 9, = A.
Hence o = Z|yen. X

Now, for n > 1, suppose that (6) has been shown whenever I" has
less than » elements, I' = {#,,...,2,} < 9, and [&] < [?;] U ... U[Z,]
It will be convenient to use the following notation: for each family
denoted by a script letter, the corresponding Latin letter with a tilda
‘'will denote its union; for example, K = | &#". The first step in verifying
{6) for I' is the following

(IIT) If .ﬂ]f’,n U{IS,: j # i}en for some ¢, then ﬂlf’fﬂi-



76 J. WILLIAMS

Indeed, let
—|Hed A P HsU{P: i #£5)) and o = & A P—F.
Since

[#] s [(LI1Pin U Py § #4)) A 2,
we have e

Next, we can show that {ﬁ} U X en by showing that [{fI} vxX]c
[Z;]. Suppose e A NPeX and yeA'NP'e o A #;, where A NP and
A’ N P’ are distinct. We need to show that (@, y)e [#]. Either 4 # A’
or P#P'; if P+#P, we are done. If A # A', we can choose an

a'e ANP—\J{P;: i +j} since A N Pet’. Then
(@'yy)e[H] < [P] V... v [Z,],

but «’ belongs only to 9’7,, and thus (2', y)e[#;], in which case P % P'.
Therefore, by step (I), s VA = A A P;en. Finally, [MIIS,] c [& AP,
and thus .M|1;¢en.

(Iv) 1 dlﬁ,-en for each ¢, then 7.

Indeed, let IT be the partition of (| JI" consisting of all non-empty
sets of the form @, n...n@Q,, where, for each i, either @Q; = P, or
Q;=U UF —P, Notlce that, for each ¢ and each K eII, either K nP =0
or K CP{ Usmg step (II), we can show that || Il = «e7. Pick
J,Kell. If An (JVUK) < Pi for some i, then [W|J U K] < [le;],
and thus &/|J U Ke7n. On the other handy if An (J u K) is not contained

in any 13,, then &/|J U K has at most one element. Suppose not; then
we can choose A, A’ o/|J U K 8o that A meets J and A’ meets K.
Pick 2zeANndJ and z'¢A’'n K; then

(@, 2')e[H|J U K] € [Z1]U ...V [Z,],

so that some f’; meets A NJ and A'N K, in which case J U K < 13,,
contrary to the assumption. Therefore, by step (II), || JII = Hey.

Before finishing the induction argument, we need to consider a couple
of special cases. First, suppose I' has two elements, # and 2. Then

[#|PNQ] < [#A 2],

aﬁd thus, by step (III), dlﬁ, dl@en, so that, by step (IV), en.
Next, suppose I' has three elements #, 2 and #. Then

[Z|PNQ]<[2a2]u[2],
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and thus lP N Qen by 1nduct10n, similarly, .sa!lP N Ren We want
to show that d|Pn(QAR)en, so that, by step (I)y we will have
MIP N (Q v R)en, where

=PNnQnR,Pn(Q—R),Pn (BE-Q),

and thus, by step (III), we have .sa(|f’en. By symmetry, dlé and dlf?,
will also belong to n, and thus, by step (IV), so will &/. To verify that
KL|P N (QAR)en, let

F=Pn(QAR), #={Hcod AP F:HnR=0,
and
X =oANP|F—-H.
We first show that {H} UX'en, 80 that, by step I, £ v X =
A AP\ Fey. # < o A P|(Q—R), so that

~

[#lS[LAPIQlS[LAPA2]c[PA2]u[R],

and 5 en. To see that {fI} U X en, we show that [{fI} vX] c [Z2] v [£]
Suppose ze AN PN FexX and ye A'NP' N Fe A A P|FwithAnPn F
distinet from A’'N P’ N F; then either A #+ A’ or P #P'. If P +# P/,

we are done. Suppose A # A'. If z, yeﬁ, then w,y,té; and since
(@, y)e[#] = [Z] 0 [2] v [#],

(, y) must belong to [#] u [#]. On the other hand, if y ¢1§, we can choose
an r’eANPn FNR sinco ANPn F¢#. Then

(@', y)e[H] = [Z] U [2] U [R];

but 2'¢Q and y¢R, so that (2’,y)e[#], and thus P # P’. Therefore,
{HYuvd] c [2]u[£], and A A P|Fen. Since [ |F] < [A A P|F],
we conclude that
A|F = L\ Pn(QAR)ey.
Consequently, o e¢n.

Finally, to finish the argument, assume »n > 4. Let #, 2,, 2, and
Z be four different elements of I'. Since

[ZIPAQ]<[?A2]vU{{R]: & +2,2),

M|I~’ N Q~‘€17 fori = 1, 2. We can show that &1[13 N (éiAés)en as follows.
For ¢ =1,2, let

Ji =P n(Q,AQ) N (@—R), K, =Pn (¢:AQ:) n (@ R).
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Then, one can immediately see that, for ¢,j = 1,2, ¢ #j,

U A{[Ze]: 2 # %},

[Z A 2] 0 U{[Z]): P # 2, %},

(2 A 2] vU{[Ze]: P # 2Py Li}s

[ |I] o (LK) v U] P # 25y 2y, R}

[& ]|y U Je]
[#|K, v K,]
[]J; v K]
[H|J; U K]

N in N in

Induction and the first two inclusions tell us that «/|J; and & |K;
belong to #. This, induction, and all four inclusions imply that </, restricted
to any two of the sets J,, J;, K, and K,, belongs to 7. Step (II) gives.
len (QIAQ )en, and then step (I) gives Man (Ql ) Qg)en By
symmetry, for distinet indices ¢,j, %k, we have ;J]Pi N (P, U.Pk)e')]
Hence, by steps (II), (III) and (IV), d|13mU{P, j #£iten, o|Pen
for each ¢ and, finally, 2/€.

Proof of Theorem 3. For this proof it will be convenient to use.
Weil-uniformities (see Kelley [3]) in place of the usual Tukey-uniformities.
First, suppose nX is a 4-space given by a (Weil)-uniformity %. We need
to show that conditions (5) and (6) are satisfied. Pick an &/ ¢, and choose
U, Ve# so that {U[A]: Ae &/} is disjoint, and VoV < U. Let # =
= {V[A]: Ae &/}. Then {V[B]: Be#} is disjoint, so that #ezn, and
{U &, X—(JB}en since V[ L] = |J %K. This shows (5).

For (6), suppose [«] = [#;] U ... u[#,] with each Z;en. For each
i, choose U,e%, so that {U;[P]: Pe%,;} is disjoint. Then, it is easy to see.
that {(U;n...Nn U,)[A]: Ae &} is disjoint, so that 7.

Now suppose nX satisfies conditions (5) and (6). For each e,
let U(&) =XxX—[L], and let # = {U(H): Len}. We show that
# is a subbase for a (Weil)-uniformity % for which » is the set of all
%-discrete families on X. Pick U(«)e #°; by (5), we can choose a #en,
so that & is a 1-1 refinement of # and {U «, X — #}en. Let

W =0U(®n T({UL, X-U2%));

then Wo W < U(«#). Indeed, suppose that (x,y), (y,2)e W, but that
(x,2)¢U(). Then (x, 2)e[ 2] and we can choose A, A'e« & and B, B’ %,
so that A # A’ xeA < B, and zeA’ < B’. Now, (#,y) belongs to W
and, therefore, it does not belong to [#] or [{{J &, X~ #}]. From
rede o and (@, y)¢[{U &, X— #}|, we have y¢X —|J %, so that
yelJ#. Then zeB and (z,y)¢[#] give yeB. Similarly, (y,2)e W and
zeA' < B’ give yeB’, contrary to the disjointness of 4. Therefore,
Wo W < U(%). Hence #  is a subbase for a uniformity #.

To see that 7 is the collection of all #-discrete families, notice, first,.
that if A, A’e /ey with A # A’, then U(H)[4] n A’ = @; this is suf-
ficient to make .o/ a #-discrete family. Conversely, suppose & is a #-discrete
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family. Then we can choose
W=U(H)N ...n U(H,)e#% with &y,..., &, e,

so that {W[A]: Ae o/} is disjoint. Pick 4, A’'e & with A # A’'. Take
xeA and yeA’; then (x,y)¢ W, so that (v, y)¢ U(2;) for some «;, and
thus (v, y)e[«;]. This shows that & < [&;]u...u[«,]. Hence,
by (6), «en.

3. Basic properties. J-spaces have the property that two disjoint
subspaces A and B of a space X fail to be proximal iff 4 U B is isomorphic
to the (direct) sum A@ B. Consequently, d-spaces are simply a description
of the finite sum structure of uniform spaces. For A-spaces, however,
the situation is not so nice. The functor 4 does not commute with sums.
But A-spaces do have sums, and 4* does commute with them.

THEOREM 4. A* commutes with sums.

Proof. Let {uy,X,} be a collection of uniform spaces. We can assume
that {X,} is disjoint and that (J {X,} is the underlying set for a direct
sum @{u,X,.}. Then it is easy to see that a family ' of disjoint subsets
of X belongs to A*®{u,X,} or to @{A*u,X,} iff «|X,e4*u,X, for
each a.

THEOREM 5. Suppose I' i8 an infinite collection of wuniform spaces;
then @ I'is a A-uniform space iff there i8 an integer m such that each uX e I"
has dimension not greater than m. Consequently, A and @ do mot commute.

Proof. Assume the spaces in I' are disjoint. First, suppose we can
choose a sequence {u; X;: jew} from I' so that each u;X; has dimension
not less than j. Then, we can, of course, find a cover for @ I such that
&/ | X; for each jew fails to have a uniform refinement of dimension less
than j. Consequently, « fails to have a finite-dimensional uniform
refinement, and thus it is not in 4 @ I'. Next, if, for some m, each uXeI”
has dimension not greater than m, then @ I', clearly, has dimension not.
greater than m. .

The class of subproducts of one-dimensional uniform spaces is,
obviously, closed under products, so that A-spaces have products. 4,
however, does not commute with products.

LEMMA 2. For any uniform spaces uX and vY, A(uXxv) is stronger
than Au x Av.

Proof. Au x 4» has a subbase of covers of the form
Px2={PxQ: Pe?,Qe2},

where & and 2 are finite-dimensional uniform covers of A4y and 4», re-
spectively. But each such £ x 2, clearly, belongs to 4(u X »).

ProroSITION 1. If Y is totally bounded, then A (uX X vY)=A4AuX x AvY.



80 J. WILLIAMS

Proof. Suppose vY is totally bounded; then 4y =+ and we need
only show that du x v contains A4(u X v). Suppose that & is a A4(u X »)-
discrete family. Choose £ X 2e¢u X v 8o that (# x 2)+« is disjoint and
2 is finite. For each Ae¢ & and Qe2, let

Poy = U{PeP: PxQn A £0}, Po=U|Pe?: PxQn U« =0),
Pq = {Po} V {Pou* Ade A},

and let #° be the intersection of the Zy’s. Each £, is at most one-di-
mensional and is refined by #. # is the finite intersection of the 2y’
and, therefore, belongs to Adu. Furthermore, (#” x 2)*.</ is disjoint; to
see this suppose 2 = {@,, ..., Q,} and pick an Ae <. Then, any element
of #° x 2 which meets 4 has the form (Pg 4N ... N Py 4) x @ for some
Qe2, and

(Pga N «ee N P a)xQ S PouXQ =(Px{Q})*xA4 < (PXx2)*A.

Therefore, «/edu X .

Example 1. Let uX be a direct sum of {R": new}, where R" i3
a Euclidean n-space. Let vY be w with the discrete uniformity. Then we
have A(uX xvY) # AuX x AvY.

Proof. Assume {R": new} is disjoint. For each ne¢w, let %, be a uni-
form cover of R" which fails to have a refinement of dimension less than
n, and is the intersection of » one-dimensional uniform covers #,,, ..., Z,,.
Let # = | J{#,: new}; then # belongs to 4 and does not have a finite-
-dimensional uniform refinement. For each j, let

Z; = U{{R"}: n<j} v {Ps: n=>j}.
Then each #; is a one-dimensional uniform cover of uX and
U = N {%;: jew}.

Let ¥ = {P x {i}: ieY,Pe#}; then ¥ is a one-dimensional cover
of X x Y refined by # x {{i}: i«X}, and whence belongs to 4(u X »).
But ¥ cannot belong to du x » since it would be then refined by a cover
of the form # x {{i}: ieY}, where ¥ is a finite-dimensional uniform
cover of uX. This would mean #  refined each #;, and whence #, which
is impossible.

Results for J-spaces similar to the above theorem and example are
given in Isbell [2], Exercise 12, p. 34. Isbell uses them to show that two
é-equivalent uniform spaces need not have a d-equivalent least upper
bound. I do not know whether the corresponding statement for 4-equiv-
alent uniform spaces is true. (P 902)

Since the completion functor preserves dimension and commutes
with products, the class of all subproducts of one-dimensional uniform
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spaces is closed under completion. Thus completeness for A-spaces can
be taken to be the same as completeness for the corresponding uniform
spaces. The following question seems interesting:
If uX is complete, under what conditions (if any) is 4uX not complete?

The problem can be related to another functor 4 using a version of a theorem
by Shirota. For any uniform space uX, the locally fine co-reflection Au
of u is the weakest uniformity stronger than u such that, for every co-
vering & of X, if A% ey, VUe%, o |Ueciu, then o/ cAu. Ginsberg and
Isbell [1] have generalized Shirota’s theorem to state that if u is locally
fine, complete and non-measurable, then cu, the weak uniformity induced
by all real-valued continuous functions on uX, is complete.

PROPOSITION 2. Suppose uX is mon-measurable and complete, and
that Alu = AAu. Then AuX is complete.

Proof. If y is complete, then Ay, being stronger than u, is also.
Thus cAu is complete by Shirota’s theorem. 4iuy = A4y is likewise complete,
as it is stronger than cAu. But A4y is complete iff Au is, as a result of
Proposition 12 of [2], p. 127. Therefore, 4u is complete.

A nice property of the total boundedness is that it is preserved by
uniformly continuous functions. The extent to which the A-uniform
property behaves this way is suggested by the following two results.
The proof of the first generalizes the example on p. 79 of [2] of a space
for which AduX > éduX. '

LEMMA 3. For any uniformities u and v, if u A v i8 a A-uniformity,
then 8o is u.

Proof. Pick Peu. Let 2eu A dv be a finite-dimensional refinement
of 2. Let {F;: i <k}edr and {V,: ael}eu be such that {V }<*# and
{F} A {V,} refines 2. Then, by Theorem IV.20 of [2], p. 66, we can,
for each i<k, let {U,;} be an isomorphic extension of {V,}|F; over
a u-uniform neighborhood of F; in a way such that

VBel', Uy < {Va} (Vs 0 Fy).

Let # = {Uy,: t<k,ael'}. Then # < £, since each U, is con-
tained in some element of {V,}*{V .}, and {V,} <* 2; # is also the finite
union of finitely many finite-dimensional families. Finally, by Lem-
mas V. 4 and V.3 of [2], p. 79, ¥ eu. Hence u is a A-uniformity.

THEOREM 6. If every uniformity between Au and du is a A-uniformity,
then Au = dp.

Proof. Suppose Au # du. Let D be an infinite discrete subset of
ApX, where X = JUu. Choose #,,%,edu so that #,< %, and
U y+{{x}: zeD} is a discrete subfamily of #,. Let &/, = %,»{{z}: z<D}.
Having chosen %,, #,, and &,, take %,,,, %,,,edu and &,,, so that

Ay = Uny#{{a}: ®eD} < %y, and Y, < U, <" %,.
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For each new, let {#,;: kew} be a star-nested base for the unit
n-cube I"™ with an essential n-dimensional cover J,,. For each new, let
J, € I" contain just one point in each non-empty subset of the form
N N (Fun—5) for # < S,,. By induction on n, let f, be a 1-1
correspondence from a finite subset of

{Ae ,: VYm<n,4An U domf, =0}
onto J,. For each mew, let
W = Uy 0 {USn (H]: HeFpp,n >m}.
It is clear that, for each m and n > m +1,

%m+1*{Uf; [H]: Héfn,mﬂ} and {Ufr: [H]: Hefn,m+1}*%m+1

are refinements of {U fo[H]: He J,m}. Consequently, # ,,,, <* ¥ ,,. Let
» be the uniformity generated by {#",,: m ew}. Now, » is not a A-uniformity
since if ¥ ev with %, < # < #°,, then Vn > m, | U f, [I"] is n-dimen-
gional since J,, is an essential n-dimensional cover. Thus #" is infinite-
-dimensional. By Lemma 3, » A du is not a A-uniformity either. Finally,
op S vAdu < Adu.
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