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1. Introduction. In a recent paper [1], the author studied the problem
of finding a constant 2 for the Sobolev-type inequality
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where y;(z) are sufficiently smooth functions which are defined on a
bounded three-dimensional domain D and vanish on the boundary of D.
Here we are employing the summation convention and a comma denotes
differentiation. It was shown in [1] that
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where V denotes the volume of D. In the present work we will sharpen
this inequality for ©* and in the process get an isoperimetric inequality
for the first eigenvalue of a certain non-linear eigenvalue problem. The
techniques presented here are applicable to the computation of other
isoperimetric inequalities for the first eigenvalues in a class of non-linear
eigenvalue problems (see [2]).

2. New lower bound. It was shown in [1] (and hence, we will not
repeat those arguments here) that computing a value for 2* is related to
calculating a lower bound for the variationally characterized eigenvalue
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where I'(D) denotes the space of Dirichlet integrable, scalar-valued func-
tions which are defined on D and vanish on §D. In particular, we will
be interested in finding a constant £* (which depends only on the geometry
of D) such that Q< 2°.
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The associated Euler system for (1) is given by
(2a) Au+u® =0 in D,
(2b) =0 on dD,

where 1 = 2°/B(u). Here we have introduced the following notation for
the Dirichlet integral of w:

B(’u/) = fu'ju’jdﬁo
D

,

As in [1], we consider a special case of (1). Namely, let Dy denote
a sphere of radius R, and let r be the radial coordinate in spherical co-
ordinates (r, 0, ). We then consider the variational problem

{ Df wju ;da)’ \
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where I',(Dg) = {w € I'(Dg):'w = u(r)}. In this special case, (2) reduces to

. Pu 2 du A — 0 CcT0. R
(a‘) drz +7dr U° = ? "[7 )’
du
(4b) u(R) =W(O) =0,
where
Q%
(5) = Bu) .

We will be interested in the first eigenvalue and eigenfunction of this
eigenvalue problem.

In the previous paper we derived a “Rellich-type” identity for
solutions of (4):

B(u) 1/2
(6) fu‘dw = [21:R] D£u3dw.

Dp

Also we showed that (2) is related to an Emden-Fowler boundary-
-value problem by the change of dependent and independent variables:

(7a) ) u(r)-= u(0)y(2),
(7b) z = rVau(0). ,
In particular, we obtain .
a 2 d
=Ly =0

daz2 2z dz
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such that y(0) =1 and y'(0) = 0. If 2, denotes the first positive zero of
y(2), then, matching boundary conditions with »(R) = 0, by (7b) we have

(8) RVAu(0) = 2,.

. The “Rellich-type” identity and interrelation between the Euler
system for (3) and the Emden-Fowler boundary-value problem will play
the leading roles in our computation of Q%.

Returning to (4a), by & direct integration of the ordinary differential
equation we get

Changing the one-dimensional integral into a volume integral and
using (5) and (6), we obtain

92
9 "(R) = — =" s da

Since
9% [u'ds = [B(w)T,
Dp
we can calculate from (9) the representation for the Dirichlet integral of u:
(10) B(u) = 8nR*[u’ (R)T.

On the other hand, we can calculate from (8) an alternative repre-
sentation

2
(11) Bw - [Z22] o,
and hence, equating (10) and (11), we find
- ut(R) 2
(12) 02 = SnRzﬁ[ %(0) ] .

The difficulty here is that we do not have the necessary information
for the first eigenfunction of (4) at r = 0, E. However, we can relate u(r)
and y(2) by transformations (7). Namely, a straightforward calculation
yields

(13) ut (.R) — QR [u(ﬂy’ (zﬂ).
VB (u)

Using (13) in (12) and substituting for «#(0) the expression derived
from (8), we finally have

Bnegly’ (20)]"

2
(14) Q% = =
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The utility of the representation of 0% given in (14) is that it in-
volves only information about the solution of a second-order initial-value
problem which we can easily handle numerically to compute 2, and y’(2,).
Using the Runge-Kutta-Fehlberg scheme (see [3]) to integrate the Emden-
-Fowler initial-value problem, it was found that

2o = 6.8969 and y'(z,) = —0.0424,
which gives a lower bound for 2%:
327,
R L

(15) %>

It should be emphasized that (14) is an exact expression for 25
and (15) is given only for comparison purposes.

Having found an expression for & in the special case where D is
a sphere of radius R (i.e., 2%), we repeat the symmetrization arguments
of [1] to conclude for the general case that

8z [y’ (zo)]2 32

2> = >R"

where R is the radius of a sphere having the same volume as D. Equi-
valently, we have

1/3
(16) 2> 2 — ey ol 37| > 32 Eil

f(‘l’i'l’c de < ‘55‘[ ]l/a{f'l’ij"/’i,jdm}

3. Conclusion. We remark that the first inequality in (16) for ©? is
isoperimetric, since equality holds for a sphere.

Using the techniques presented above and in [1], one can derive
other isoperimetric inequalities for eigenvalues. For example, if D is
now a two-dimensional bounded domain and A is the smallest eigenvalue
of the eigenproblem for fixed » =1, 2, ...,

Ap+ig??*! =0in D, ¢ =0 on 4D,
then in [2] it is shown that

or

1 |
(17) hzgmlnp+ 1)P7P [y (20) 17,

where R is the radius of a disk having the same area as D, and y(2) is
the solution of the equation 2y’ 4y’ +2y***!' =0 with y(0) =1 and
y'(0) = 0, 2, being the first positive zero of y(2). Inequality (17) is iso-
perimetric.
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