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WEAKLY ALMOST PERIODIC MAPPINGS
ON ONE- AND TWO-MANIFOLDS

BY

TOMASZ DOWNAROWICZ (WROCLAW)

1. Introduction and notation. This paper is a continuation of [1], thus
we remind only the most important terms.

The mapping ¢ on a compact space X is weakly almost periodic (w.a.p.)
provided the semigroup S, = cl {¢, ¢?, ...} consists only of continuous map-
pings (cl denotes the point convergence closure), and it is strongly almost
periodic (s.a.p.) provided ¢ has equicontinuous iterates. By M we will denote
the union of all minimal invariant sets for the system (X, ¢). It is known that
for a w.a.p. system there exists a retraction e S, of X onto M, and that ¢ is
sa.p. on M (see [4] and [1]). We will also investigate the set M, of all
recurrent points, which is a superset of M (see [1]); a point xe X is recurrent
if x = Y (x) for some Y eS,. The system (X, ¢) is called transitive if there is a
point xoe X for which {xo} US,(xo) = X. It follows from [1] that if X is
connected, then for a w.a.p. transitive system (X, ¢), ¢ is a homeomorphism,
M is a single minimal set, and every point xe X is recurrent.

We give now some general lemma which will be used in the last part of
this paper.

LEMMA. Let x be a recurrent point for a system (X, ¢). Then x is
recurrent also for the system (X, ¢"), where ne N.

Proof. It is clear that for each open set U,3x there exist a natural
number n, and an open set U,3x, U, < Uy, such that ¢"'(U,;) = U,. By
induction we obtain a sequence m, of natural numbers, and a decreasing
sequence U, of neighbourhoods of x with the property ¢™(U,) < U,_, for
each k. Then ¢™(x)e U, for every m which may be obtained as a sum of a
few numbers n, with different indices k. Now it remains to apply an easy
number-theoretic lemma which says that for any sequence n, and an arbitrary
ne N there exists m of the above form divisible by n. Thus we have found
in U, a point from S,a(x). Now, since S,n(x) is closed, the assertion follows.
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2. One-dimensional case.

THEOREM 1. Let I be the unit interval and let ¢: I — I be a continuous

mapping. The following conditions are equivalent:
(1) ¢ is w.a.p.

(i) The set D = {xel: ¢*(x) = x} is an interval (or a point).

(ili) @2" converges uniformly.

(iv) @ is s.a.p.

Proof. (i) = (ii). By (i) the set M is an interval (as a retract of I) and, by
the proof of Theorem 3.2 in [4], ¢2|M is the identity. So M = D, and (ii) is
proved.

(i1) = (ii1). The condition (ii) may be expressed as follows: the intersec-
tion K of the graph G of ¢ with its reflection s(G) around the main diagonal
is connected. Now suppose that I # D and ¢ is essential. Thus G is an arc
joining all the sides of the square I x I. Clearly, s(G) has the same property
and the arcs do not intersect the diagonal out of K. Suppose that K does not
attain any of the sides. Then some component of G\K joins K with the
lower and right sides below the diagonal. So does one of the components of
s(G)\K. Thus the above components intersect each other, which is a contra-
diction. If now K reaches some of the sides, by symmetry, it also reaches the
symmetric side. Consider, e.g., the left and lower sides. Since K # G, K does
not attain the right and upper sides. Now G \K is an arc joining K with the
upper and right sides, whence it intersects the diagonal. The obtained
contradictions prove that if D # I, then ¢ is not essential. Consider the
sequence of intervals ¢"(I). It decreases to an invariant interval on which ¢
is essential, whence, by the above calculation, the limit set is D. Thus we
have ¢"(x) — D on I. Since ¢?|D is the identity, it is easy to estimate that
@?" converges uniformly, as (iiij) demands. '

The implications (iii)) = (iv) = (i) are obvious.

THEOREM 2. Let C be the circle. The continuous mapping ¢: C — C is
w.a.p. if and only if one of the following conditions holds:

(a) @ is a rotation or a reflection.

(b) ¢ is inessential and it is w.a.p. on the interval ¢(C).

(c) The system (C, @) is a factor (by the identification 0 = 1) of some
system (I, ¢) on the unit interval, for which ¢(x) = x<>x =0 or 1.

In the cases (a) and (b), ¢ is also s.a.p., and in the case (c) it is not s.a.p.

Proof. It is well known that (a) = s.a.p. By Theorem 1 also (b) = s.a.p.
Suppose that (c) holds. The whole graph of ¢ lies below or above the
diagonal (except for 0 and 1), so @"(y) — 0 or 1 for all yel. Thus ¢"(x) — x,
for all xe C, where x, is the image of the identification 0 = 1, whence ¢ is
w.a.p. In this case the iterates ¢" are easily seen not to be equicontinuous, so
¢ is not s.a.p. Conversely, suppose that ¢ is w.a.p. If it is not essential, the
condition (b) holds. If it is essential, then, by Theorem 3.2 in [4], the set M is
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equal to C or it reduces to a single fixed point x,. If M = C, then ¢ being
s.a.p. is well known to be a rotation or a reflection. It remains to show M
= {xo} =(c). First observe that the condition (c) may be expressed as
follows: there exists a single fixed point xoeC, and if we open the circle in
X9, we do not disconnect the graph of ¢; more precisely, for any closed
interval J < C not containing x,, the image ¢(J) does not contain x, in its
interior. Now, suppose that M = {x,! and (c) is not true, i.e., there exists a
closed interval J = C, J $x,, with xgeint ¢(J). Then there is a neighbour-
hood U of x, contained in ¢ (J) and disjoint from J. By continuity of ¢ there
exists also an open interval V3x,, V < U, with ¢(V) < U. Since ¢ is
essential, we have ¢ (V*) o U¢, and since V* o J, also ¢ (V) > U. Thus ¢ (V°)
= C; in particular, ¢ (V) > V. Write

Hy=V° and H,=o¢ '(Hy)NH,.

Let xe Hy. Since Hy, < ¢ (H,), there exists ye H, for which ¢(y) = x. Now
@(y) = xeH,, and hence ye¢@ '(H,). Thus yeH,, and we have proved
H, = ¢(H,).. Conversely, for any xe¢@(H,) we have x = ¢(y) for some
yeH, c 9" 1(H,), and thus x =¢(y)e H,, whence H, = ¢ (H,). Obviously,
H, = H,. By induction, the sequence of closed sets H,,, = ¢~ '(H,)nH,
has the property

H,=¢(H,,,)oH,,, for each n>0.

Observe that ¢(H,) = H, # @ implies H, # @, and inductively H, # Q.
Hence the set
H=(H,

is nonempty, closed and invariant, so it contains a minimal set. We have
obtained a contradiction, since M = {x,} and x,¢ Hy, o H.

3. Two-dimensional case. For w.a.p. systems on two-manifolds Montgo-
mery et al. have given in [5] a complete classification of the center system
(M, ¢|M). However, we can still say not much about the action of ¢ on the
whole manifold. For example, we do not even know if there may exist
recurrent points out of M (which is impossible for one-manifolds; this topic
has been investigated in [1]). In particular, if ¢ is transitive and w.a.p., then
each point of the manifold is recurrent. Our main result, which follows now,
is proving that in this case the system is minimal.

THEOREM 3. Each w.a.p. transitive system (X, ¢) on a compact two-
manifold is minimal.

Before proving the theorem we give some algebraic-topological lemmas
(see [3] for terms and details).

LEMMA 1. Let I be a continuum contained in a compact connected two-
manifold X without boundary. Denote by U, some sequence of closed metric
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balls around I' of diameters decreasing to zero (thus U,,, < U,). Then, for m
and n sufficiently large,

t(n(U,) = t(n(U,)),

where n(U,) denotes the fundamental group of U,, and t is the homomorphism
of fundamental groups induced by the embedding into X.

Proof. (A) Let C,, C,, ..., C, be disjoint open submanifolds of dimen-

sion two in X, such that X\ (J C; is connected. Then no more than m of C;
i=1

are different from the disc, where m is defined as the number of prime factors

in the unique representation of X as a connected sum of tori or projective

planes. We omit the easy proof of this fact.

(B) Attaching to U, all the discs which are components of the comple-
ment U§ of U, we obtain a compact connected CW-complex V, with n(V,)
= 1(n(U,)). By connectedness of U,, each component of U;, contained in a
disc-component of Uj, , is also a disc, whence V,,, < V, follows for each n.

(C) We will show that V,ug, , is a deformation retract of V;\C,,
where C; denotes the union of all components of V; contained in V;, and
g,.2 is some graph in (V;\C,)\V,. It is enough to show that in every
component C of (V;\Cy)\V, there is a graph g such that C contains
(6C N dV,) U g as a deformation retract (by @ we mean the boundary). By a
standard triangulation argument for C, the last assertion is true if some loop
of 0C is not contained in dV,. Now, suppose 0C < dV,. This means that C is
a component of V5. Now, by the definition of C,, we have C < C,. But this
is impossible, since, by the definition of C, C < V}\C,.

(D) Denote the fact proved in (C) by

d.ret.

N\C, = Vaug,,,.

d.ret.

Similarly, ¥,\C, = V3 Ug,, 3, where C, and g, 3 are defined analogously, for

all indices enlarged by one. Since C, is in the interior of ¥, (as an open set),

it is in the first above deformation the image of .itself only, whence
V(€1 U C) ™ (\C) U g1 5 Vaugys,

where g, 3 ©g4,, U g,,3. By induction we obtain

d.ret.

Vl\(cl'u CrU...UC) = V1 UGy 0+

In particular, this proves that V;\ ) C; is connected for each n and, the
i=1

3

n
more, X\ |J C; is connected.
i=1

Now, by (A) and by the fact that none of C; is a disc (recall the
definition of ¥, in (B) and that of C, in (C)), we see that, except for a finite
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number, the sets C, are empty. Hence, applying the argument (C) to ¥, (with
n large enough) instead of V;, we obtain

Vndie’L Vn+ 1Ynn+1-
For fundamental groups this means that
(V) = (Vas1) XGpn+1>

where G, ,.; is some free group and by x we denote the free product. By
iteration, for all m > n,

n(V,) = n(Va) >(Gn,n+l ><Gn+l.n+2 X... XGm—l.m-

Since n(¥,) = t(n(U,) is finitely generated, it follows that the groups G,y
are trivial, except for a finite number, and the lemma is proved.

LEMMA 2. Let X be a compact connected two-manifold without boundary
and Y some compact space of dimension one. If a continuous mapping y: X
— Y is “onto” and monotonic (i.e., Y~ (y) is connected for each yeY), then the
homomorphism ¢ ,: n(X) = n(Y) of fundamental groups induced by Y is also
“onto”.

Proof. Let y be an arc in Y, and aq, b its end points. We ought to show
that there exists a homotopy class a of paths in X transformed by y into
paths in Y homotopic to the path traversing y. Fix some a,ey ~!(a) and
boey 1 (b). Set I' = Y~ !(y). By monotonicity of y, I' is a continuum in X,
and hence Lemma 1 is valid. There exists a homotopy class a of paths from
ap to by in X having representants arbitrarily near to I'. Thus, by uniform
continuity of ¥, the paths of y(a) traverse arbitrarily near to y. But in the
one-dimensional space Y, homotopic paths traverse a common arc belonging
to the same homotopy class. The arc is now equal to y, because of the
“arbitrarily near” argument.

Proof of Theorem 3. Suppose first that X is a manifold with
boundary 0X. Recall that, by the assumptions of Theorem 3, ¢ is a
homeomorphism, whence 0X is invariant. All the points of X are recurrent.
Since 0X is a one-manifold, we can apply Theorem 2 of [1], whence we
obtain 0X — M. Now, by transitivity of the system (X, ¢) the assertion
follows directly from Theorem 4.6 of [4]. The proper part of the proof
dealing with manifolds without boundary is as follows: Let x, be a transitive
point. If xoe M, the assertion follows, if not, then repeating the construction
made in the proof of Theorem 2 in [1], we can find a point ye X \M with
the closed orbit

Y=cl{o"(y), n=1,2,..)}

nowhere dense in X. Let y be the element of S, for which ¥ (x,) = y. By the
w.a.p. assumption, ¥ is continuous and Y (X) =Y. Observe that Y is of



258 ‘ T. DOWNAROWICZ

topological dimension one. By a general factorization theorem for continuous
mapping (see, e.g., [6]) we have

'/’ =¢z¢19

where y,: X = Y, y,: Y= Y, y, is gontinuous, “onto” and monotonic, ¥, is
continuous, “onto” and zero-dimensional (i, ¥ !(y) is a zero-dimensional
set for all ye Y). Moreover, By the Hurewicz Theorem (cf,, e.g., [2]), we have

1 =dimY = dimy,(Y) > dim Y—0,

whence dim Y = 1. On Y define ¢ by the formula @y, (x) = ¥, ¢(x). An easy
calculation (using monotonicity of y; and the commuting of ¢ and y) shows
that the above definition is correct and that (Y, §) is a w.a.p. transitive
system. Moreover, ¥, (M) = M and ¢, (M) c M, where M denotes the union
of minimal sets for (Y, ¢). By Lemma 2, the fundamental group of Y is
finitely generated. Thus ¥ contains no more than finitely many loops. Since ¢
is also a homeomorphism, the union of the loops is a ¢-invariant finite graph
G. By Theorem 2 in [1] we have G = M. Write § = wl(xo) Since ¢2(37)
= y¢ M, we have y¢ M. Now, there is exactly one arc? in Y joining j with
M (otherwise, we would have a loop not contained in M). The arcs and
$(7) may (a) have a common point p out of M or (b) be disjoint out of M.

For (a) assume that p is the earliest such point. The only arc joining y
with @ (y) contains p. By an easy induction we infer that the only arc joining
y with @"(y) contains all the points p, @(p), ..., @" ' (p).

For (b) recall (the Lemma in the Introduction) that the sets of recurrent
points for ¢ and ¢" are equal. Also the unions of minimal sets for these
mappings have been shown in Theorem 2.11 in [4] to be the same. Thus we
may assume that all the images ¢"(j) are pairwise disjoint out of M;
otherwise, for some ¢" we would have case (a).

Now, since x, is recurrent, there exists an arc in X containing some
sequence ¢ *(xo) convergent to x,. The arc may be represented as a union of
arcs y, decreasing to x,, such that y, contains x, and all ¢"(x,) for j > k.
The images ¥, (y,) are path-connected subsets of Y, containing y and ¢ (j),
respectively. Thus, in case (a) each of them contains the whole closed orbit of
p, in particular the point £(p) of M, and in case (b), directly the points of M.
But, by the continuity of ¥, ¥, () — 7, and, since M is closed, € M. Thus
we have obtained a contradiction and we are done.

The theorem proved leads us to the following corollary, which is now a
direct application of the Montgomery—Sine-Thomas classification [5]:

CoroLLARY. The only w.a.p. transitive system on a compact two-manifold
is the minimal torus rotation.
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