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It is well known that, for sums of independent real random variables,
convergence in distribution, in probability, and with probability one
are equivalent. This result was generalized in the recent years by several
authors (Loynes [7], Csiszar [3], Tortrat [11], [12], Galmarino [4] and
others) to infinite products of random elements with values in topological
groups.

The aim of this paper is to establish a generalization of these results
to infinite products of random elements taking values in a metric semi-
group which satisfies conditions (L) and (R). Section 1 is preliminary.
In Section 2 we consider families of accumulation points associated with
infinite products of elements in a metric semigroup and we give algebraic
characterizations of convergence of such products in terms of these fami-
lies. In our investigations these characterizations play a role similar to
those obtained by means of ‘‘tail idempotent” in [3].

In Section 3 we find a characterization of convergence in probability
for infinite products of independent random elements with values in
a metric semigroup in terms of the support of accumulation point families
associated with these products (Theorem 3.1). As an application we derive
conditions analogous to those in Theorem 1 of [1].

In Section 4 we prove a sufficient condition for the infinite product
of random elements to converge with probability. one (Theorem 4.1).
From this result it follows immediately that, for infinite products of
independent random elements with wvalues in an Abelian semigroup,
convergence in probability and with probability one are equivalent.
Theorem 1 of Loynes [7] follows also from' this result.

Results of this paper were partially announced in [2].

1. Preliminaries. Let S be a metric space. The Borel s-algebra of S
will be denoted by #. By a probability measure on S we mean a non-nega-
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tive, g-additive tight measure x4 on %, i.e., a measure satisfying
u(d)=supu(K) (K éompact)
Ked

for every A € #, and such that x(8) = 1. The set of all probability meas-
ures on S will be denoted by S.
Now, let us consider the family of sets of the form

V.(f1s ceos Jiy E1y ey &) = {” ES; ‘ffid”"‘ffid.“|< &
i=1,2,...,k,

where f,, fs, ..., fx are bounded real-valued continuous functions on 8§,
and &, &, ..., & are positive numbers. It is easy to verify that the family
of sets obtained by varying k,f,, foy .-y fis €1y €2y ...y & satisfies the
axioms of a basis for a topology. We shall refer to it as the weak topology
in §, and § will always be considered as a topological space with that
topology. It is known that § is metrizable (see [14]). We say that /7 < § is
uniformly tight if for every real positive number ¢ there exists a compact
set K such that u(K) > 1 —¢ for every u € I1. Prokhorov’s Theorem asserts
that every uniformly tight family IT < 8 is conditionally compact. On
the other hand, if u, converges weakly to u, and u,, u € §, then the family
{Us p1y ey fhny .} is uniformly tight (see [6]). So IT = S is conditionally
compact iff each sequence (u,), 4, € I1, contains a subsequence (u,.) such
that {u,.} is uniformly tight.

We say that a mapping X from a probaﬁility space (2, S, P) into §
is a random element if it is measurable (in the sense that X~ '# < ©).

Let (X,),>; be a sequence of random elements. Let us assume that
the distributions u, of X, belong to §. We say that the sequence (X,),=,
converges in distribution to the random element X if u, converge weakly
to the distribution x of X.

Let d be a fixed metric in 8 and let (X,)5_, be a sequence of random
elements defined on a common probability space (2, S, P). Let us assume
that u,e8 (n =0,1,...), where 4, i8 the distribution of X,, and that
(2, S, P) is a complete measure space. Then, for every n, d(X,, X,) i8
a random variable (see [10], p. 9). We say that X, converges in probability
to X, if

limP {d(X,, X,) > ¢} =0

for each positive real ¢. If {u,} is conditionally compact, then the Cauchy
criterion,

limP{d(X,, X,,) > ¢} =0 for each ¢> 0,
m,n

is necessary and sufficient for the stochastic convergence of the sequence X,,
to some random element X (this is a slight alteration of I.1 in [13]).
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It is well known that if a sequence X,, of random elements converges
with probability one (i.e., for P-almost all w € 2) to a random element X,
then it converges also to X in probability. Also, if a sequence of random
elements converges in probability to some random element X, then it
converges to X in distribution.

Now, let 8 be a metric semigroup, i.e., a metric space together with
an associative, jointly continuous binary operation. By # x# we shall
denote the Cartesian product of the Borel o-algebras on 8, and by &/
the Borel g-algebra on 8 x 8. Let u,» € 8. The completion of # x# with
respect to u x v will be denoted by (Z x #)"*". It is known that

BXB < A < (BXE)

(see [12], p. 281). Hence the mapping (z, y) - xzy from 8 x 8 into S is
measurable with respect to the o-algebras # and (# x%)"*’. If B € %,
then the sets

27 'B = {y;ay e B} [By ' = {w; 2y e B}]
are Borel measurable and the mappings
¢ —>v(@ 'B) [y—pu(By")]

are #* [#’] measurable, provided u,» € § (#” and #” denote the comple-
tion of # with respect to u and », respectively). Thus we can define the
convolution u» of two probability measures by the formula

(1.1) w(B) =pxv{(@,9);oy e B} = [v(@'B)u(da) = [ u(By™)»(dy)
S S

for B € #. It is known that uv € § and that the convolution is associative
and jointly continuous. Thus § with the weak topology and the operation
of convolution is a metric semigroup. (For the proofs, see [11] and [12].)
By the support of u we shall mean the sef of all z € 8 having the property
that u(U) > 0 for each open neighbourhood U of x. The support of x will
be denoted by C(u). It is well known that

(1.2) O(ur) = C(u)C(»).
If IT < §, then by the support C(I) of IT we shall mean the set
C(II) = UC(p).
uell

If X and Y are two random elements defined on a complete prob-
ability space and having tight distributions, then their product Z = XY
is also a random element (see [10], p. 9). Moreover, if X and Y are inde-
pendent and u, » are their distributions, then the composition XY has the
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distribution u» (provided x4 and v are tight and the basic probability space
is complete).

Now, let 8 be a topological semigroup. We say that S satisfies condi-
tion (R) [(L)] if, for all compact subsets A and B of 8,

A7'B =Ja'B [AB™! = |JAb™!]

aecd beB
is compact.
The semigroups having these properties have been introduced by
Pym [9]. It is known that topological groups and compact semigroups
satisfy both cenditions (L) and (R).

LEMMA 1.1. Let S be a metric semigroup satisfying (R) [(L)]. Let
us suppose that A~'B < U [AB™' < U] for compact subseis A,B < 8
and an open set U. Then there are open subsets V and W such that A < V,
BcWand VW c U [VW™! < U]

Proof. Let us suppose that a € A and b € B. Let
- V, ={x;d(z,a)<1/n} and W, = {x;d(x,bdb)<1/n}.

Next, let

V. (S\NU)nW, 0 for every m.
Thén v,8, = w, for some v,€V,, w,eW,, s, e S\U. Let
D = {a,v,,v,,...} and F = {b,w,,w,,...}.

Then D and F are compact, and s, € v;'w, < D™ 'F. Since D™ 'F
is compact, there is a subsequence s,. such that s,. converges to s, € S\ U.
Therefore, there exists a positive integer N such that

V.(S\NU)nW, =0 forn>N,

which means that V,'W, < U. The remaining part of the proof follows
immediately from the compactness of A and B.
From this lemma it is easy to obtain

COROLLARY 1.1. Let S be a.metric semigroup satisfying (R). Let s € S
and let U be an open neighbourhood of s. Then there exists an open neighbour-
hood V of s such that

V(s'V)ec U.

Now, let u,ve 8 and A,B,A"'B, AB 'e®. It is easy to check
the following formulas:

(1.3) p(AB™) > uv(4)+»(B)—1,
(L.4) v(A™'B) > uv(B) +p(4)—1.

We have the following simple but very useful
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LEMMA 1.2. Let S be a metric semigroup satisfying (L) [(R)]. Then §
also satisfies (L) [(R)].

The lemma follows directly from the characterization of weak com-
pactness and from inequality (1.3) [(1.4)].

2. Infinite products in metric semigroups. In this section we prove
some algebraic characterizations of convergence of infinite products in
metric semigroups which are needed in the following sections.

Throughout this section, 8 denotes a metric semigroup satisfying
condition (R).

Let (x,),-, be a sequence of elements from 8. For the sake of brevity,
throughout this section we use the following notation:

-~

n ___ —_— n
Ym = CpuPpiy --- &, (MK M), Y, =Y.

oo

Let us assume that {y,};., is conditionally compact. By N, we shall
denote the set of all accumulation points of the sequence (¥%),-:
(k =1,2,...), and by N, the set of all accumulation points of all se-
quences (yx)r>1, Where y, € N,. Finally, by 4 we shall denote the set of
all acoumulation points of the double sequence (¥p,)n<n-

First we make the following simple observation about N,, N
and A.

LEMMA 2.1. Suppose that the set {y,}n_, is conditionally compact.
Then {yi}n_i 8 conditionally compact for each k =1,2,..., and {yn},.<n
(myn =1,2,...) is conditionally compact. Moreover,

(i) for every vy, € N, there exists y € N, such that y.y = y,
(k=1,2,...);

(ii) A= N;'N, (k=1,2,...);

(iii) No €4 < NN NN N

Proof. It follows from the assumption that 4, = {y,, ., ...} is
compact. Since y,, = y,_,Y%, We have

yzey;—llyn < Al_lAl for k<n (k,n = 17'2,---)7

and so the compactness of {y}j},‘?:k and {y;,}n<, follows immediately from
the compactness of A7' A4, (let us recall that S satisfies (R)).
Properties (i) and (ii) follow easily from the formula

(2.1) y;cy;’;-l = Yy (k<l<m),

the continuity of multiplication, and the definition of A and N,.

The inclusion 4 < N ' N, follows from (ii). The inclusion 4 < NN '
can be derived, in a similar way, from. (2.1); and Tortrat proved in [13]
that N, < 4. )

7 — Colloquium Mathematicum XXXVII.2
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LEMMA 2.2. Let us assume that {y,},~, 18 conditionally compact.
The following condiléons are equivalent:

() (Yn)uz1 18 convergent,
(ii) yAd =y for a yeN,,
(iii) yNo =y for a yeN,.

Proof. It is easy to observe that condition (ii) is equivalent to the
following one:
(ii") lim yy, =9 for a yeN,.

m<n
m, n—>00

It is also obvious that (ii) = (iii). So it remains to prove that (i) = (%),
(ii’) = (1) and (iii) = (ii).

The implication (i) = (ii) is easy: if y™ — 1 for a double sequence
(m'yn'), n" < m', then by the convergence of y, to y (N, = {y} by (i)) and
by (2.1) we have yi = y.

Now, let

lim yy, =9 for a yeN,.

m<n
m,n—+00

By the definition of N, there is a subsequence n’ such that y = limy,,".
Let U be an open neighbourhood of y. By Corollary 1.1 there exists an
open neighbourhood V of y such that

V(y 'V) e U.

If n, is a positive integer in {n’'} such that y,, € V and yy,, € V for
n'yn, m > n,, then

Yo = YnYngt1 € V(y7'V) = U for n > n,.

Hence limy, = y, and (ii’) = (i).

It remains to prove that (iii) = (ii). Let us suppose that, for an
element y e N,, yN, = y. Let e N 'N,, ie., 86 =y, for some
Y1y Y2 € No. Then

Y0 =yy10 =yys =y.
Since A = N_'N,, we have (ii), which completes the proof.

Now let (z,),, be a sequence of elements in 8. If y}; is convergent,
whenever n tends to infinity, for every k, then we say that (z,) is compo-
sitionally convergent. In such a case we shall denote lim y} by ¥,.

n—-o0

LEMMA 2.3. Let us suppose that {y,} t8 conditionally compact. The
Jollowing conditions are equivalent:
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(1) (®n)n>1 18 compositionally convergent,

(ii) yA4 =y for every y € N,

(iii) N, 8 a left-zero semigroup, t.e., vy 1y, = y, for every y,,y, € N,.

Proof. It follows from Lemma 2.2 that (i) = (ii). It is also obvious
that (ii) = (iii). The proof that (iii) = (ii) is quite similar to that of the
implication (iii) = (ii) in Lemma 2.2. Thus it remains to prove that
(ii) = (i). Let us assume that (ii) is valid. If y, € N, then by Lemma 2.1 (i)
there exists an element y € N, such that v,y = y,. Since yA4 = y (by (ii)),
we have

A = yvd = yry = .
Thus, by Lemma 2.2 (ii), (2,),>, i*¢ compositionally convergent.

3. Convergence in probability. In the sequel, 8 will denote a metric
semigroup satisfying condition (R) and having a left-subinvariant metric d
(i.e., such that d(2z, 2y) < d(x,y) for z,y,2 € 8). It is well known that
metric groups have such a metriec (in fact, a left-invariant one, see [5]).
Michael has proved in [8] that locally compact semigroups satisfying
the second countability axiom and condition (L) also have such a metric.

Let (X,),-, be a sequence of independent random elements (i.r.e.)
with values in 8. By u, we shall denote the distribution of X, . We always
assume that all random elements considered in this paper have tight
distributions and that the probability space (2, S, P) on which they are
defined is complete. For the sake of brevity, we shall use in the sequel the
following notation:

Y, =X, Xn...X, (m<n), Y=Y,

Distributions of X,, Y, and Y, will be denoted by g, +; and »,,
respectively. Clearly,

Vm = Bmbmi1 e Bny  Vp = B1fba e fn-

Since 8 (the semigroup of all probability measures on §) is a metric
semigroup satisfying (R), we can apply the results of the preceding section
to this semigroup. When dealing with this semigroup, we shall write u
and » instead of # and y, respectively. Let N,, N, and A denote the sets
defined as in the previous section for the sequence (#,)n>1 = (Kn)n>1-

Now we state and prove the main result of this section.

THEOREM 3.1. Let (X,),~, be a sequence of independent random ele-
ments taking values in S. Let us assume that {»,},,, 18 conditionally compact.
Then the following statements are equivalent:

(i) Y, converges in probability,
(ii) #C(A) = = for every x € C(N,),
(iii) xC(N,) = « for every x € C(N,).
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Proof. Suppose that (i) holds, i.e.,, Y, converges in probability to
a random element Y,. Let », be the distribution of ¥,. Let 1 be an arbi-
trary element of A and let e € C(A). Thus there is a subsequence (”:;’:_l)km
(P < Mgy, B =1,2,...) of (v3,) such that
(3.1) limy, ¢ = A.

Let us write

Zgpa =Y Zy = Ynzk (k=1,2,..))

Ngp—1—1?
and

Tk :X,n X

2k—1 """ gk’

Let g, denote the distribution of T,. Without loss of generality we
may assume that Z, converges to Y, with probability one. By the construc-
tion of Z, and T, we have ’

(3.2) Zy =Zy_ T, (k=1,2,..)).
Let {U,},~: be a basis of open neighbourhoods at e. By (3.1) we have
liminfo,(U,) > A(U,)>0 (m =1,2,...).
Then, from the Borel-Cantelli lemmas it follows that
P(lim:up{Tk eU,) =1 (m=1,2,...).

Let us write

E=NNU{T.eU,}

m>=1n=l k>n

and let D < E be such that P(D) =1 and Z,(w) > Y,(w) whenever
weD. .

Now, for every w, € D we choose a subsequence 7', such that T, (w,)
converges to ¢ if k" — co. On the other hand,

Zi(wy) > Yi(w,) if k' — oo.
By (3.2), we have
Y, = ¥,e (mod P).
In order to conclude that (ii) holds it remains to show that x = we

for each x € C(v,). Suppose that there is an element x e C(»,) such that
xe #* ®. So there are open sets U, V and W such that

xelU, xeW, UnV =0, WeclV.
Hence
0<P{Y,eUnW}<P{Y,eU; Y,6eV},=P{¥,e UnV} =0,

a contradiction. Thus we have 2C(1) = x for every = € C(v,) and every
A € A. Since 7'z is closed, we have (ii).
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Since N, < A, (ii) = (iii). Our proof will be completed if we show
that (iii) = (i).

Let us write H = C(N,). Suppose that (iii) holds. Since all proba-
bility measures with finite support are dense in S, we obtain yN, =y
for every y € N,. From Lemma 2.2 it follows that », converges to a meas-
ure #, and that N, = {#;}. Given an arbitrary ¢ > 0, set

U= | {se8;d(se, /)< e},

e,feH

V=U {se8;d(s,e) < ¢/2}.

ecH
Since d is left-subinvariant, we have
(3.3) Vv'lcU.

Using the left-subinvariance of d, the continuity of convolution and
inequality (1.3) we obtain

(3.4) P(cyﬂ{d(Yne, Y.fl< s})

>P(U {d(Tnne, f) <s)) =0

e, feH
=V (Vv > Ym41 (V) + Vapa (V) —1

for » > m and a sequence (y,);~, (7, € N;). Since V is an open neighbourhood
of H, we have

limy, (V) = 1.
k
Thus, by (3.4),
(3.5) lim P( | {d(Y,e, Y,f)<e})=1.

m,n—co efeH
m<n

Put
F = | {se8;d(se,s)> ¢}.
We have "
(3.6) F c 8\C(,),
and so
limsupy, (F) < limsupy, (F) < #,(F) = 0.
Thus

limy,(F) =0
which means that

(3.7) ImP( M {d(Y,e, ¥,)<¢e})=1.

n eeH
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Finally, by the inequality (easy to verify)
P({d(Y,, Yp) > 36}) <P(U{A(Y,, Yoe) > e}) +

eeH

+P( ) {@(Yoe, Tuf) > }) + P(U (T nf, V) > o))

e, feH
and by (3.5) and (3.7), we obtain
lim P{d(Y,, Y,.) > 3¢}) = 0.

n, m—oo

Consequently, Y, satisfies the Cauchy criterion, and hence there
is a random element ¥, such that Y, converges in probability to ¥,.
This completes the proof.

We say that the sequence (X,),., of independent random elements
is compositionally convergent [in distribution, in probability, with proba-
bility one] if, for every m, Y, is convergent whenever n tends to infinity
[in distribution, in probability, with probability one].

COROLLARY 3.1. Let X, be a sequence of i.r.e. Suppose that {v,} is
conditionally compact. Then the following conditions are equivalent:

(1) (Xp)n>1 8 compositionally convergent in probability,

(ii) eC(A) = e for every e € C(N,,),

(iii) C(N,) 8 a left-zero semigroup.

Proof. Suppose first that (X,),., is compositionally convergeut
in probability. Denote by C the support of the family {»;},.,, where

v, = lim »}.

By Theorem 3.1, 2C(N,) =« for every xeC(¥) (k =1, 2,...),
and so for every z € C. Now, if u, converges weakly to u, then by the
definition of the support of measure and by the inequality

liminfu, (V) > u(V)
for every open V, we infer that
C(w) = UC(,)-

Hence C(N,) < C, and so eC(N,) = e for every ¢ € C(N,), which
means that C(N,) is a left-zero semigroup. This proves that (i) = (iii).

Now, to show that (iii) = (ii), let C(N,) be a left-zero semigroup.
Hence N, is also a left-zero semigroup (since the probability measures
with finite support are dense in § and the convolution is continuous).
From Lemma 2.2 it follows that y4 = y for every y € N, and every 4 € A.
Hence

C(y)C(A) = C(y) for every yeN, Ae .
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By this inclusion we have
eC(1) =eC(y)C(A) < eC(y) =e¢ for every eecC(N,),AeA.

So we have proved that (iii) = (ii).

Finally, suppose that (ii) holds. Since N, < 4 (Lemma 2.1), C(N,)
c C(A). From (ii) it follows that, in particular, eC(N,) = e for every
e € C(N,) which means that C(N,) is a left-zero semigroup. Since the
probability measures with finite support are dense in §, N, is also a left-
zero semigroup. Thus, by Lemma 2.3, (X,),., i8 compositionally con-
vergent (in distribution) and ¥,y =¥, for every ye N, (k =1,2,...),
where

v, = lim »}.

Since ye = y for every eeC(N,) and y € N, we have #e = ..

Since e2 = ¢, we obtain

Co)e =C() (k=1,2,..), ecC(A).
Let x € C(v,). By this equality there is y € C(¥,) such that ye = .
Hence re = yee = ye = = and
zC(N,) =« for every xeC(v,) (k =1,2,...).

By Theorem 3.1, (X,),., is compositionally convergent in proba-
bility.

4. Convergence with probability e¢ne. Throughout this section we
assume that S is a metric semigroup satisfying (R) and (L) and having
a lett-subinvariant metric d.

The main result of this section is the following

THEOREM 4.1. Let (X,),, be a sequence of i.r.e. taking values in S. Sup-
pose that {»,} is conditionally compact. If

(4.1) 2[C(NL)C(A)™ '] =x  for every x € C(N,),
then Y, converges with probability one. )
Proof. From Lemma 2.1 it follows that 4 < N, 4~'. Hence
UC(A) € C(N,)0(A)™ .

AeAd

By (4.1), we have
UCA) <z 'x for x e C(N,).

AeA

“Since 2~ 'z is closed, C(A) < x~'®, which gives

(4.2) xzC(A) =« for every z e C(N,).
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By Theorem 3.1, Y,, converges in probability to a random element ¥,
with the distribution »,, and N, = {#,}.

Let x be an arbitrary but fixed element of C(v,) and let W, be the
open ball with center # and radius 1/r. From condition (R) it follows
that 2~ 'z is compact. By (4.2), C(A4) is compact, and so is C(N,_). Thus
O(N,)0(A)™! is also compact. Let us observe that #7'W, is an open neigh-
bourhood of C(N_,)C(A)"'. In virtue of Lemma 1.1, there are open
neighbourhoods U, and V, of C(N,) and C(A), respectively, such that

(4.3) UV ca'W, (r=1,2,..).

Using the definition of N, and the fact that U, is an open neigh-
bourhood of C(N,) we can choose, by induction, a sequence n;, (1, < 7,
k=1,2,...)) such that

(4.4) Y, — Y, with probability one,
(4.5) P{Y il eU}>1-27% (k=1;2,..).

The rest of the proof is very similar to the final part of the proof of
Theorem 3.2 in Csiszar’s paper [3].

We make use of a “lemma for events” asserting that if 4; and B;
(¢ =1,2,...,m)are arbitrary random events such that, for each fixed i,
A; and B; are independent, then

(4.6) P(CJA,-nB,-) inf P(B;) P(UA)

1<ism

Applying (4.6) for the events
'A = {Ynk-H ! r} and Bi = {Y::itl+l € Vr}7

'nk+1

where k,r are fixed positive integers and ¢ =1,2,...,n. ,—n,—1,
and using (4.3), we obtain

Mg 41—~
(4.7) P{Y.1¢ U}=P( U 4:inB)
n nk_H—l
> inf P{Y,*T'eV}P( U {¥Yr.¢a"'W2}.
nk<n<‘nk+l 1 n=np+1

Since V, is an open neighbourhood of C(4), we have

n 1
(4.8) inf . P{Y '€ V'}>E for % large cnough.

nk<n<nk+1—l

Combining (4.5), (4.7) and (4.8) we obtain

o nk+1—1

ZP( U {Y k+1¢w—lW,}) < oo.

n-n,
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Thus, by the Borel-Cantelli lemma, we have
(4.9) Yo € W, (n=mn+1,...,m,,—1)

with probability one, except for a finite number of k’s. Now, if O is an arbi-
trary open neighbourhood of z, then by Corollary 1.1 we obtain

4 .10) W, (x"'W,) < 0

for sufficiently large r. Since x is an arbitrary element of C(¥,), and Y,
=Y, Yq,+1, We infer, using (4.4), (4.9) and (4.10), that Y, converges
with probability one.

Remark. The following simple example shows that condition (4.1)
of Theorem 4.1 is not necessary.

Let 8 = {e, f} be a right-zero semigroup, i.e., ¢f =f = f*, fe = ¢ = ¢,
and let X, = e. Then Y, = ¢, but condition (4.1) is not satistied.

COROLLARY 4.1. Let (X,),>, be a sequence of i.r.e. Suppose that {v,}
18 conditionally compact. If Y, converges stochastically and

C(A)C(A)™" = 0(4)710(4),
thén Y, converges with probability one.

The corollary follows immediately from Theorems 3.1 and 4.1.

Remark. This corollary implies immediately that if C(A) is in the
center of §, i.e., if As = s for every s € 8 and 1 € C(A), then Y, converges
stochastically iff it converges with probability one. In particular, if S
is Abelian, then convergence in probability and with probability one for
infinite products of i.r.e. are equivalent.

COROLLARY 4.2. Let (X,),-, be a sequence of i.r.e. with values in S.
Suppose that {»,},-, is conditionally compact. If
(4.11) ¢[C(N,)C(N,) '] =e¢ for every e e C(N),

then (X,),~, 18 compositionally convergent with probability one.

Proof. Using the same arguments as in the first part of the proof
of Theorem 4.1 we obtain
(4.12) eC(N,) =e¢ for every eeC(N,).

In particular, C(N,.) is a left-zero semigroup. From Corollary 3.1
it follows that (X,),-, is compositionally convergent in probability. By
Theorem 3.1, for every x € C(N,) (k =1,2,...) and for every ¢ € C(N)
we have
(4.13) re = .

Now we prove that

(4.14) N A< N NI
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Forif p € N A7}, then there iz A € A such that oA € N,. By Lemma 2.1,
there is y € N, such that Ay e N,. Thus ply e N,. By Corollary 2.1,
N2, = N, whence o e N, N_'. By (4.11) and (4.14), we have

(4.15) e[C(N,)C(A)" '] =e for every ec C(N,).
From (4.13) and (4.15) it follows that
z[O(N)C(A)"']=a for every x € O(N,).

By Theorem 4.1, (X,),., is compositionally convergent with prob-
ability one.
By Corollary 4.2 we obtain

COROLLARY 4.3. Let (X,),-, be a sequence of i.r.e. Suppose that {v,},~,
18 conditionally compact. If C(N ) is a left-zero semigroup and

O(Ng)0(N)™' € C(Ny) ' C(Ny),

then (X,),>, 18 compositionally convergent with probability one.

Remarks. (i) If C(N,) is a left-zero semigroup and C(X,) is in the
center of 8, then Y, converges with probability one. In particular, if
each idempotent of § is in the center, then every sequence (X, ),-, of i.r.e.
such that C(N,) is a left-zero semigroup is compositionally convergent
with probability one. This statement has been proved in [1], Theorem 1 (iii)
(with an additional assumption that S is finite and C(N,) is one-
point). From Corollary 4.3 it follows also that, for infinite products of
independent random elements with values in a metric group, the con-
vergence in probability and with probability one are equivalent — the
result obtained earlier by Loynes (Theorem 1 in [7]).

(i) The assumption that the basic probability space (£2,S,P) i8
complete is needed only to prove that every pair (X, Y) of random ele-
ments with values in § is measurable with respect to the Borel ¢-algebra 2/
in § x 8 and the ¢-algebra G in 2 (see [10], p. 9). However, this is always
true if 8 is separable. Thus, in this case, the results of Sections 3 and 4
remain valid without any additional assumptions concerning the space
(2,3, P).
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