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OPERATOR SEMI-STABLE PROBABILITY MEASURES
ON BANACH SPACES
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W. KRAKOWIAK (WROCLAW)

In this paper we define operator semi-stable probability measures
on a real.separable Banach space which are identified as limit laws.
Further, we get a representation of the characteristic funectionals of op-
erator semi-stable probability measures.

1. Notation and preliminaries. Let X denote a real separable Banach
space with norm ||-|| and with dual space X*. By (-, -) we denote the dual
pairing between X and X*. Further, B(X) will denote the algebra of con-
tinuous linear operators on X with norm topology. Given a subset ¥ of
B(X), we denote by Sem (F') the closed multiplicative semigroup of opera-
tors spanned by F. The unit and zero operators will be denoted by I
and 0, respectively.

A sequence {u,} of probability measures on X is said to converge
to a probability measure x4 on X if for every bounded continuous real-
valued function f on X

[ fap, ~ [ fau.
x X
The characteristic functional of x is defined on X* by

ply) = [e*=Vu(da),
X

where y € X*. For an operator A from B(X) and a probability measure u
on X let A denote the probability measure defined by Au(E) = (4~ (E))
for all Borel subsets E of X. It is easy to check the equations

A(uwy) = Apsdv,  Ap(y) = h(4%),

where A* denotes the adjoint operator. Moreover, 4,u, — Au whenever
A, - A and p, — u. A probability measure u on X is said to be full if
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its support is not contained in any proper hyperplane of X. By 4, (v € X)
‘we denote the probability measure concentrated at the point .

A probability measure x4 on X is said to be infinitely divisible whenever
‘for every positive integer n there exists a probability measure u, such that
4 = px*, where the power is taken in the sense of convolution. Let u
be an infinitely divisible probability measure on X. Then for every ¢ > 0
‘there exists an infinitely divisible measure » on X such that ¥(y) = [u(y)]°.
We denote » by u°. The set {u°},., is an Abelian semigroup with the convo-
lution as a semigroup operation, and the mapping ¢ — u° is a continuous
homomorphism of the additive semigroup of non-negative real numbers
onto {u°}.5, (Proposition 1.2 of [8]).

LEMMA 1. Let u and v be probability measures on X and let {x,} be
a sequence of elements of X such that

limu(y)exp(i<a,, ¥>) = (y) for all y e X",

n—»00

Then there exsts a unique element x € X such that u = 8,v.

The lemma follows immediately from Lemma 1.1 of [8].

Given a probability measure 4 on X, we define sz by a(E) = u(—E),
where —FE = {—«: # € E}. For any probability measure 4 on X the
measure |u|® = usi is called the symmetrization of pu.

Let [a] be the largest integer not greater than a.

2. Stating the problem. Let u be a probability measure on X. We call u
operator semi-stable if its characteristic functional u satisfies the functional
equation

(2.1) [4(y)) = u(B*y)e*®¥  for all y e X*,

where B € B(X), b € X and ¢ € (0, 1). In the one-dimensional case, charac-
teristic functionals which satisfy for all # an equation of the form

¢(@) = [p(b2)]%,

where a > 0 and 0 < b < 1, have been considered by Lévy ([11], p. 204)
and the solutions have been called by him sems-stable. Semi-stable measures
on the real line have been studied by Kruglov in [9], by Pillai in [13]
and by Rao and Ramachandran in [14]. Operator semi-stable measures
on finite-dimensional spaces have been considered by Jajte in [6]. Kumar
[10] has treated semi-stable measures on Hilbert spaces and proved that
they are limit laws. We obtained a representation of the characteristic
functionals of these laws in the same manner as Jajte did in [6] for stable
probability measures.

PROPOSITION 1. Every operator semi-stable measure on X 1is infinitely
divigible.
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Proof. Let N be a collection of closed subspaces of X with finite
codimension and let py: X — X/N, N €N, be canonical maps.
Let u be an operator semi-stable measure on X such that

(B = u(B*y)e®Y  for all y e X*,

where B € B(X), be X and ¢ € (0, 1).
Let » = |u|* and N € N. We have
P @) =[F(BYYY* (weX*)
and
P (mny) = [P((B*Yahy)]"* (v e (X/N)")

for ¥k =1,2,... Let n, = [¢™%] and y e (X/N)*. If »(a}y) = O, then
((B*)entyy) =0 for k =1,2,...
Let v (nyy) # 0. Since

B (a3 — [ (B )™ < [[7 (B emyey)] e —1]
= 1—w(aly)™ ) = 1y (ay)teH,

v ((B*)*n}yy) converges to »(nyy). Thus myB*(»)*"* —zy». Hence myv
is an infinitely divisible measure and u(y) # 0 for all y € X*.
We have

1
p(y) = [p((B*Yy)]'"exp (i?<a,,, y>) for all y € X°,

where
51
a, = &;?Bf-‘b (B =1I),k=1,2,...
If N eN, then
tay) = [a((B Pk ez (i 3z oy 93)  tor y & (/)"
Since

| (% y) —[((B*Ye )| ™ exp (s (mpey oy, )|

< |[#((B*)¥nyy) exp (i{myay, ?I))]c—k_"" —1

= |[is (A y) *1 = —1] = |is(afyy)' =™ 1,
{[&((B*)ea}y) " exp (i <y ay, ¥))) converges to u(zyy) for every y e (X /N)".
Thus

”NBkﬂ‘nk*aﬂkﬂNak —> Tnp
and =yu is infinitely divisible for all N e N. By Theorem 1.1.9 of [3], u
is infinitely divisible. This' completes the proof of the proposition.
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3. Characterization of operator semi-stable measures. The following
theorcm proves that operator semi-stable probability measures on X are
limit laws.

THEOREM 1. A probability measure u on X ts an operator semi-stable
measure if and only if there exist a probability measure v on X, an operator
B € B(X), sequences {a,} and {n,} of elements of X and of positive integers,
respectively, such that, for certain ¢ € (0, 1),

(3.1) lim % — o
koo Bpyy

and ‘

(3.2) B“*™kx8, — p.

Proof. Necessity. Suppose that u is an operator semi-stable meas-
ure and -
(B = u(B%)e<*  for all y e X°,

where B € B(X), ¢ €(0,1) and b € X.

Let
. k1
m=[0*] and e, =d D SB (B = 1.
J=1
We have
lim—%_ _ .
n—soco Mgy
Since

- P Ve .1
(3.3)  isy) = [a((B*)y)l* exp (z F < 9))

= [B((B*)*y)]™ exp (i myay, 93) [ ((B*)*y) exp (i o, YOI,

the sequence {B*u*"*sd, ,} is shift compact (Theorem 3.2.2 of [12]).
By Lemma 1.2.4 of [3] we show that

(3.4) lim sup |B*u*"*#d, . (y)—p(y) =0 for all r> 0,
k—»o0 ﬂer
r

where U, = {» € X: |w|| < r}and ,U‘,’;,A= {y e X: Kz, y>|<lforallze U}
We have

lis(y) — Btu*™exd,, 0, ()] < [((B*)*y)exp (i<ay, yD)|° 71 1]
= )P = LA P .

By u'—<*¢™" . 3, (Proposition 1.2 of [8]) and by Lemma 1.2.3 of [3],
condition (3.4) holds. Thus the sequence {B*u*"44,., } converges to u.



OPERATOR SEMI-STABLE MEASURES 356

Sufficiency. Assume that there exist a probability measure »
on X, an operator Be B(X), sequences {a,} and {n,} of clements
of X and of positive integers, respectively, such that (3.1) and (3.2) hold.
Further, the sequence

{[9 (B (B**y)[™ exp (i <Bay, y>) exp (o< —%_,,,—Ba,, y>)}

K+1
converges to [u(y)]° for all y € X*. By (3.2) we have
B(B"v'"k*dak) — Bu.
Clearly,
. ! .
4 (B*y)exp (@<n £ 4,1 — Ba, y>) —[u(y))® for all y e X*.

k+1

By Lemma 1 there exists a b e X such that u® = Buxd,, which
completes the proof of the theorem.

Given a probability measure x4 on X, we denote by C,(u) (0 < p < 00)
the subset of B(X) consisting of all invertible operators A with the
property [4(y)}? = Au+d,(y) for all y € X* and certain a € X. Let

C(n) = {p €(0, ®): C,y(n) #B}.

It is clear that if C(u) # {1}, then u is an operator semi-stable measure.

PROPOSITION 2. Let u be a probability measure with C(u) # {1}.
Then either C(u) = {s8": n € Z} for certain s € (0, 1) or the set C(u) is dense
in (0, o0).

Proof. We assume that supC(u)n(0,1) =38 < 1. Suppose that
C, = 9. Then there exist p, qe0(u)Nn(0,1) such that 2 <p<g<s.
Further, we get 8 < p/¢ <1 and CM_l # @, which contradicts the assump-
tion that s is the supremum of C(u)N(0,1). Suppose now that C(u)
# {8": n €Z}. Then there exists an r e C(u)N(0,8] such that r = s"
for » =1,2,... For some positive integer n, we have s"*!< r < §",
Hence 8 < r/s° <1 and C"—no # @, which contradicts the assumption
that 8 is the supremum of C(u)n(0,1). The proposition is proved.

THEOREM 2. Let u be a full probability measure on X. Then there
emsts an operator B € B(X) with

limexp(Blogt) = 0
-0

such that
u = exp(Blogt)u*xd  for all t> 0,

where b, € X, if and only if there exist sequences {B,} and {c,} of operators
of the algebra B(X) and of real numbers of (0,1), respectively, such that
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Sem({B,:n =1, 2, ...}) 18 compact in the norm topology of B(X), ¢, — 1 and
g™ = Busd,  for n =1,2,... and b, X.
The theorem follows immediately from Theorem 3.1 of [8].

4. Representation of operator semi-stable measures. For the theory
of infinitely divisible probability measures on Banach spaces and even
on more general algebraic structures we refer to [156] and [3]. In par-
ticular, if ' is any bounded non-negative Borel measure, then e(F) is
defined as

Sp!
e(F) = ¢~ FX) ZFF"‘, where F*° = §,.

k=0

The measure F is called a Poisson exponent of ¢(F).

Let M be a not necessarily bounded Borel measure on X vanishing
at 0. If there exists a representation M = sup¥,, where F, are bounded
and the sequence {e¢(F,)} of associated Poisson measures is shift compact,
then each cluster point of the sequence {e(F,)+d, } (z, € X) is called
a generalized Poisson measure and is denoted by é(M). Clearly, é(M)
is uniquely determined up to translation, i.e. for two cluster points, say
p1 and py, of {e(F,)+d, } and {e(F,)*d, }, respectively, we have u; = uy*d,
for certain «# € X ([15], p. 313). Further, the measure M is called a gener-
alized Potisson exvponent of é( M). Let M (X) denote the set of all generalized
Poisson exponents of X.

By a Gaussian measure on X we mean a probability measure ¢ on
X such that for every y € X* the measure yp induced on the real line is
Gaussian. In this paper we consider only symmetric Gaussian measures.
For such measures the characteristic functional is of the form

A 1 .
i) =exp(—5 @ B) e,

where R is the covariance operator, i.e. a compact operator from X*
into X with the properties (y,, Ry,> = {y,, Ry,> for all y,,y,eX*
(symmetry) and {y, Ry) > 0 (non-negativity) (see [17], p. 136, and [2]).
By R(X) we denote the set of all covariance operators of Gaussian
measures on X.

Tortrat proved in [156] (see also [3]), the following analogue of the
Lévy-Khinchine representation of infinitely divisible laws: each infinitely
divisible measure u on X has a unique representation 4 = g#é(M), where o
is a symmetric Gaussian measure on X and M € M(X).

PROPOSITION 3. Let B € B(X). Then a probability measure u on X
18 operator semi-stable with u® = Bu=d, for some ce(0,1) and be X if
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and only if p = p»é(M), where o is a symmetric Gaussian measure with the
covariance operator R and M € M (X) such that cM = BM and ¢cR = BRB"*.

The proof is trivial.

COROLLARY 1. Let B e B(X) and let u be an operator semi-stable
probability measure on X with u° = Buxd, for some ¢ € (0,1) and b € X.
If u = p*é(M), where o is a symmelric Gaussian measure and M = M (X),
then o and M are concentrated on subspaces X, and X,, respectively,
which are invariant under B.

Let B be an invertible operator from B(X) with

lim B® = 0.
n—>+oo

Given a subset E of X, we put v(B) = {B"z: v € B, neZ}. It is
clear that for any compact set with the property 0 ¢ E and for any pair
71, 73 (¥, < 74) Of positive numbers the inequality r, < |B"™z,|| < r, (@, € X)
implies the boundedness of the sequence {m,}. This simple fact yields
the following

LeEMMA 2. Let E be a compact subset of X and 0 ¢ E. Then for every
pair ry, vy (ry < 7;) of positive numbers the set {x: r, < ||| < r3}Nr(R)
8 compact.

The following lemma reduces our problem of examining a measure
M e M(X) with the property cM = BM for some ¢ > 0 to the case of
measures concentrated on r(FE), where F is compact and 0 ¢ E.

LEMMA 3. Let M € M(X) and ¢cM = BM for certain o> 0. Then
there exists a decomposgition

M =

n

M,

00
=1

where M, e M(X), ¢cM, = BM,, M, are concentrated on disjoint sets
©(E,), 0 ¢ E, and E, are compact.

The lemma follows immediately from Lemma 5.4 of [16].

Now, we are ready to prove the representation of the characteristic
functionals of operator semi-stable measures.

THEOREM 3. Let B be an invertible operator from B(X) with

lim B* = 0.

A—>»00

A probability measure u on X is an operalor semi-stable measure and
u¢ = Bu=»é,, where ¢ € (0, 1) and b € X, if and only if there exist an element
a € X, an operator R € R(X) such that cR = BRB® for certain ¢ € (0,1)
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and a finite measure A on T = {w € X: 1< || < ||IB7Y|} such that

@1)  aly) = exp{z'<a, ¥y — = <y, Ry>+

32 7 [ @) -1 -i@e 1o(B")]A(ds),
Ne=—00
where 1;, denotes the imdicator of the unit ball D in X and y € X°.
Proof. To prove the necessity let us assume that x is an operator
semi-stable measure, B is an invertible operator from B(X) with
limB®* =0
n—oo
and u°® = Bu»d, for certain ¢ € (0, 1). Further, 4 is an infinitely divisible
measure and 4 = g#é(M), where p is a symmetric Gaussian measure with

the covariance operator K and M € M (X). Moreover, for certain ¢ € (0, 1)
we have

(4.2) BM =c¢M, c¢R = BRB".
By Lemma 3 there exists a decomposition
M= 2 M,
A=l

where M, e M(X), BM = oM, M, are concentrated on disjoint sets
©(¥,),0¢ B, and B, are compact. .

Let D, =t(E,)n{z:1< |»|<|B'}. By Lemma 2 the set D,
is compact. We define an equivalence relation in D, as follows: x,~ x,,
@,, 2y € D,, if and only if there exists an integer » such that z, = B"w,.
In order to prove the continuity of this relation suppose that z, ~ a7}
and that the sequences {r,} and {x,} converge to x and z!, respectively.
Then for some integers k, we have B""w = ;. By the compactness of E,
and the assumption 0 ¢ E,, the sequence {k,} is bounded. Clearly, for any
its cluster point k, we have Bz = »!, which implies # ~ . Thus the
relation ~ is continuous. Hence it follows that the quotient space D, [~
is compact ([1], p. 97). The coset containing » will be denoted by [x].
Further, the mapping & — [#] from D, onto D, |~ is continuous. A theorem
of Kuratowski (Theorem 1.4.2 of [12]) shows that there exists a Borel
subset T, of D, such that T, intersects each [r] at exactly onc point.

Let f, be a mapping of T, xZ into v(E,) such that f, (v, n) =
The mapping f, is continuous and one-one. By a theorem of Kuratowski
(Corollary 1.3.2 of [12]) the mapping f,' is measurable. Let f be a mapping

(-] =<}
of \JT,xZ into |J v(E,) such that f(z,m) = f,(¢,m) if xeT,. The

n=l1 n=1
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mapping f is one-one, and f and f~! are measurable. Hence the o-tield
generated by the collection of the sets B"(F¥'), where n is integer and F

stands for Borel subsets of T, = | JT,, consists of all Borel subsets of

Ur(E,). -

" Put

(4.3) g(n,F) = M({B"r: e F}) (neZ).
Since BM = ¢M, we have

(4.4) g(n, F) = 67"g(0, F) = 0™ A(F),

where A,(F) = g(0, F) for all Borel subsets of Ty. We can extend (4.4)
for all Borel subsets of X\ {0} by the formula

oo

1
(4.5) HE) = D [1p(B0)ido),
vy

fie=— 00

where 21(@) = 4,(GNT,) for any Borel subset G of T = {»:1 < o]l < IB~'|I}.
Further, from the Dettweiler representation of the characteristic func-
tionals of an infinitely divisible measure on X (Theorem 1.2.5 of [3]) we
get the formula

1
(16)  w(y) = explica, ¥>— 5 @, B>+

+ [t —1-ica,9) 1o @,
X

where y € X*, a € X, R € R(X), M € M(X) and 1,, denotes the indicator
of the unit ball D in X. Inserting (4.5) for M into (4.6) we get (4.1).

By a simple calculation we can check that each measure u with the
characteristic functional of form (4.1) fulfils equation (2.1), which com-
pletes the proof.

A probability measure u on X is called sems-stable if its characteristic
functional satisfies the functional equation

(4.7) [ = u(by)e>¥  for all y e X*,

where 0 < || <1, 0<e¢<1 and a € X.

PROPOSITION 4. Let u be a non-degenerate measure on X satisfying (4.7)
and let p be the unique real solution of the equation |b|® = o. Then

(2) 0 <p<2;

(b) p =2 if and only if u 18 a Gaussian measure;

() 0<p <2 if and only if u = é(M) for some M e M(X).
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The proposition is an immediate consequence of the following fact:
if x4 is a semi-stable measure of X, then yu is a semi-stable measure on the
real line for all y e X*.

From now on the unique real solution p of the equation |b|” =¢
for a non-degenerate semi-stable probability measure 4 on X will be
called the exponent of u.

COROLLARY 2. Let u be a probability measure on X. Then u is semi-
stable if and only if either u is Gaussian or there exist constants p (0 < p < 2)
and b (0 < |b| < 1), a finite measure Aon T = {r: 1 < ||| < 1/|b|]} and an
element a € X such that, for every y € X*,

(4.8)  ji(y) = exp {i<a, Yo+

|b

fl=— 00

> 1
+ Do Tf [exP ("3, ¥3) 1 — "o, Y12 (bPa)]A(da)],

where 1, denotes the tndicator of the unit ball D in X.

The measure A appearing in representation (4.8) will be called the
representing measure for u. Let A,(X) denote the set of all representing
measures corresponding to semi-stable measures on X with the exponent p
(0 < p < 2). Clearly, 4 € 4,(X) if and only if the measure M defined by

1
(4.9) uE =y T f 1,(b"2) A(da)
T

Ne=—00

belongs to M (X). The set M (X) has the following property: if N is a non-
negative measure on X and N < M, where M € M(X), then N € M (X).
Hence 4 € A,(X) if and only if the measure 1, defined by 4,(E) = A(E)+
+ A( —E) belongs to A4,(X). This fact reduces the problem of determining
A4,(X) to examining symmetric measures 1. We say that X is of type r
(2 > r > 0) whenever there exists a positive constant ¢ such that for any
collection &,, &,, ..., &, of independent symmetrically distributed X-valued
random variables we have

n
5 3

THEOREM 4. If X is of type r and r > p, then A,(X) consists of all
Jinite Borel measures on T.

Proof. We use arguments similar to those given by Jurek and Ur-
banik in [7]. To prove the theorem it suffices to show that for each sym-
metric finite measure 4 on X the measure M defined by (4.9) belongs

n
"<o D EJgIr
i=1
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to M(X). Let
0
1 n
M(F) =n§ o Tf 1;(5"0) A(da)
and
M) = o [ Le00)2@)  (k =1,2,..5

b7

then the measures M, (n = 0,1,2,...) are finite on X and vanish at 0.
Put, for simplicity, u, = e(M,‘) ( =0,1,...). Since

M=) M,

k=0
we conclude that M e M (X) if and only if the sequence {uosu,* ... t[t,‘}

converges to a probability measure on X or, equivalently, the serles 21),,
k=0
of independent X-valued random wvariables 74, 7%,, ... with probability

distributions u,, p,, ..., respectively, converges almost surely (Theorem 3.1

of [4]). To prove that > 7, converges almost surely, it suffices, by the

k=0
Borel-Cantelli lemma, to show the convergence of the series

(4.10) D mlfo: loll > a¥),

k=0

where a = |p|*+) 7P < 1. Betting a, = M,(X) and » =a;'M
for k =1,2,..., we get

(411 PRI L ¥

n=0
and
a, = |b|”P*A(T).

Further, for a positive constant ¢ we obtain
[ ol %® (d2) < oy b]*"n.
x .

Consequently, by (4.11) we have

f ol py(do) < cﬂbl"’exp(—ak)z =2
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Since

exp( —a,,)Z( =Y < 6qa;, for certain ¢, > 0,

n=0

we get the inequality

[l iy (do) < oga®r*) (& =1,2,...)
X
with a constant ¢;. Consequently,

wel{@: loll > a¥}) < a7Fr f el () < (k =1,2,...,

which proves the convergence of series (4.10). This completes the proof
of the theorem.

In particular, from Theorem 4 for p < 1 and every Banach space X
a8 well a8 for 1 < p < r and Banach spaces X of type r we get the descrip-
tion of 4,(X).
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