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ON A CLASS OF MIXED BOUNDARY VALUE PROBLEMS
FOR LINEAR HYPERBOLIC EQUATIONS

BY

H. MARCINKOWSKA (WROCLAW)

In this paper we are concerned with the initial boundary value prob-
lem for linear hyperbolic equation of order m defined in the Euclidean
space R"*!. The boundary conditions are given on a hyperplane of co-
dimension » > 1. The problems of this sort were studied first by Sobolev
[3] for polyharmonic equations and investigated later by Sternin [4]
for elliptic equations of arbitrary order. Sternin introduced an analogue
of the Lopatinskii matrix and proved that the problem has finite index
if this matrix is non-singular. :

In this paper we introduce the matrix D(C) (Section 7) similar to that
used by Sternin, but containing the symbol of the operator P ‘deviated'
into complex domain. Assuming that it may be estimated from below by
some power of Im¢ (see (7.2)) we prove that our problem is properly
posed in terms of suitably defined generalized Sobolev spaces (Theorem 4).

The method of solving the problem was stimulated by the paper of
Chazarain and Piriou [1]. In particular, their lemma (quoted as Theorem I
in this paper) is the essential tool for constructing the linear convolution
system (A) (Section 6), from . which the unknown densities ¢, of the poten-
tials », may be computed.

In this paper we restrict ourselves to the simplest case where the
differential operators under consideration have constant coefficients and
consist only of terms of higher order. In the last section we give a simple
example of a boundary value problem satisfying our assumptions.

1. Basic definitions and notation. In this section we gather the nota-
tion which will be used in the sequel:
z,(eR,y,neR"’, t,7eR;
(¥,8) =8 (n,7) =0 eRnH_'
(w’ Y, = (2,8), (§1n,7) = (& 0) GR“H
= (0,1) e R**'~" is the versor of t-axls,'
C =o+in e 0™’ L, = a—ing;
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azj = a/azj’ D::j = i—lazj’ -Dz = (Dzl’ XY -Dz,);

& = 3;{ 3;:, D =D::} -D::: (a=(a1y...r ), la] =a,+ ... +a);
similarly &, D%, D,, etc.

The Fourier transform of a tempered distribution g will be denoted by
g or Fg; F'g stands for the inverse Fourier transform.

For an arbitrary open cone ¢ = RP the dual cone C* is defined as
C* = {z e R?: (2,2') = 0 for 2’ €C}.

The space of tempered distributions will be denoted, as usual, by
8’ (R?). By O, (R?) we mean the set of all functions infinitely differentiable
in R? with all the derivatives of polynomial growth at infinity.

We also put

H, —{pe§(E*): lglt = [(1+10P) Ip (o) *do < oo},
H,, =|pe 8 (B"):
ok, = [f (14188 + 0P) (L +I0l') 1§(£, o)Pdédo < oo},
8, = |p e D'(R®): suppy < {t >0}, ¢~'p € §'(R?)}

for p =n+1 or p =n+1l—v.
The properties of the spaces H, and H,, with » =1 are given in
detail in [2]. Throughout this paper we shall use their slight modifications

Hf ={pef,:epecH,)} and Hi ={pel,:epech,)
with the norms

dat - dat -
lol, = lle~*pll, and  Ipl, = le~*Pll.rs

respectively.

We shall deal with differential operators of the form P(D,, D,, D,),
where P(&, n, ) is a homogeneous polynomial with real coefficients. We
say that the operator P (or the polynomial P) is hyperbolic with respect
to t if

(2) P(0,m,) # 0,

(b) for arbitrary fixed & and n the equation P(&, ,7r) = 0 has only
real (not necessarily distinct) z-roots.

The properties of hyperbolic operators used in the sequel can be
found in [2]. We shall deal particularly with the fundamental solution E
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of the operator P defined by

‘P(E Co)
P&, L)

where ¢ € C3(R"*!) and ¢ (z, 8) L o(—az, —s).
It is known that E e S (R**') and

(E, ¢ = (2m) " ‘ff dtdo,

(1.1) F(e*E)(&, 0) = PE L)

Moreover, the support of E is contained in the dual cone I'*, where
I’ is the cone of hyperbolicity of the operator P. Put I'y = I'n {o= 0}.
We shall use the estimate

(1.2) [P(&, 0)| = |P(0, n)|
with n € —TI', (see [1] and [2]).
2. Preliminary results. The main tool in our investigations is the

following

THEOREM I (Chazarain, Piriou [1]). Let I'y be an open comvexr come
tn RP. Then the following statements are equivalent:

(A) F 8 a holomorphic function in R® —iI'y, homogeneous of degree
—p —d, with the following property: for every closed convex cone L < I,
there are a real number 6 and a positive number ¢ such that

(2.1) \F () < e|Im¢)®

Jor e R?P—iL, |{| =1, Im{ # 0.
(B) There is a tempered distribution f, homogeneous of degree d, mth
suppf < IV and such that
F(2) = [e"®™0f(2)]" (L eRP—il).

We shall use mainly the fact that (A) implies (B).
We prove now

ProOPOSITION 1. Let C = R? be an open convex come containing the
positive half of z,-axis and let f, g € D'(RP) satisfy the conditions

suppf = C* and suppg < {z,>0
Then

(2.2) 6 P(fag) =e¢ Pfre Py,

Proof. It is suﬁjcient to show that the convolutions on both sides
of (2.2) are well defined. Obviously, for arbitrary j =1,...,p—1 and
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sufficiently small € > 0 the points (0,...,0, 4-¢,0,...,0,1) belong to C
(here the j-th coordinate is +¢). Therefore, for every z € C* we have

(2.3) >l (G=1,...,p—1).

It follows from (2.3) that each z € C* may be written in the form
z = |2|2, where |¢| = 1 and 2, > ¢ > 0 (with a constant ¢ independent of z).
From this statement it may be easily deduced that the sets suppe(z+2')
and suppf x suppg (considered as the subsets of R?”) have a compact
intersection for an arbitrary fixed ¢ € D(R?). Thus the convolution on the
left-hand side of (2.2) is well defined. The right-hand side can be treated
similarly.

PROPOSITION 2. Let f, g € 8'(R?) and f € Oy (RP). Then fxg € 8'(R?)
and (fxg)" =f3.

This follows immediately from Theorems 30.3 and 30.4 in [5].

- ProPOSITION 3. Let P(&, o) be a homogeneous polynomial of degree m

with real coefficients such that P(&, 0) > 0 for & # 0. Then for an arbitrary
compact K < O™~ there ewxist positive constants B and ¢ such that

(2.4) I1P(&, 0)| = c|é™
Jor L e K and |&| > B.
' Proof. We have

P(£,0) = D a. &+ D b(0)E,

laj=m laj<m
where b, are polynomials of degree m — |a|. Therefore

(2.5) |P(&,¢) = d|E™—-M|&™,
where

d = inf a,& and M = sup 1. (8)]-
1&1=1 |.,|=2,,. ek |a|gl:n
Now (2.5) yields (2.4) with ¢ = d/2 and B = 2M/ad.
PROPOSITION 4. Let P be a hyperbolic polynomial satisfying assump-
tions of Proposition 3 and let
B

£
Tan(@) = | B o7amy

mth arbitrary "f'iwed. ne —Iy and multi-index p € R°. Suppose that m > v
(V"d Iﬂl <m-—v. The'n Fﬂ € OM(Rn+1_').
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Proof. It is easy to show by induction that for an arbitrary multi-
index g € R**'~” (J¢| > 0) we have

w1 wom
° P(&,0+im)  [P(&, o+in)pet!?

where w is a polynomial of degree at most |g|m —1 with respect to £.
Therefore, it follows from Proposition 3 that all the integrals of the form

éB )
fag(P(E, o+ 1in) )df

R'

converge uniformly with respect to o lying in an arbitrarily fixed compact
in R**'~*. Thus F,, is in C°(R"*!~*) and may be differentiated under the
sign of the integral. For { = o+in we put Fy({) = F4,(0). Then F,
and all the derivatives 02F, are homogeneous functions. To prove our
statement it is therefore sufficient to estimate the function:

. g [ w(&, a[|], n/|L])
2.6 F)l—] = :
(2:6) (% ")( ) J G g

a¢.
iz d

According to Proposition 3 the integral on the right-hand side may

be written ‘as the sum of two integrals [ and [ , which we denote by
BI<B  161>B
Ky and Lg, respectively. Then using (1.2) we get

m(lel+1) L i
(2.7) IKp(C)I <0]C| e lﬂiB'w (57 ICI ’ Icl )dg’

where ¢ = [P(0, n)]~'®'", The integral on the right-hand side of (2.7) is
obviously a bounded function of ¢ € R**'~*; using once more Proposition 3
we see that the integral Lz has the same property.

3. Some properties of the distributions supported by the hyperplane
&r = 00

THEOREM 1. The following statements are equivalent:

(a) g € H;,, and suppg 8 contained in the hyperplane © = 0.

(b) If k < —»/2, then

(3.1) g= D d.(s)D"d(a),
lel<—k—»/2

where

(3.2) @ € Hicyrrojz41a15

if k> —»/2, then g vanishes identically..
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Proof. Suppose that (b) holds. If ¢ = 0, then (a) is obvious, and so
it is sufficient to consider the case k¥ < —»/2. Putting

(3.3) d,(8) D" é(w) = g.(2, 8),
we have §,(&, o) = éa(a) & and, therefore,

lgalle = [ [ @+IEE+10P)* L+ [of) £ (d, (o) dédo.

pntl—r R

Il

Setting & = (1+ |o|?)"?5, we obtain

(3.4) T A - s BRI ol
R’

As the integral on the right-hand side of (3.4) converges, g, € H;,,
and so g € H, , according to (3.1) and (3.3).
To prove the converse implication we first show the following:

(I) Let p be a fized mon-negative integer and r an arbitrary real num-
ber. Then the functional

(35)  Hp,af>| Y [[+1ofy\Df (@, o) dwdo]”

0<|ai<p

defines a norm which is equivalent to the usual norm Iy, -
Indeed, it suffices to estimate the functional (3.5) for fe 8. It is
easy to verify that

(3.6) e = W —sris+ D 1D fIE s,

i=1

Using (3.6) p times we obtain
(3.7) e = > DI prriars

0<|a|<p

where n, are some positive integers. Using Parseval’s equality in L*(R,)
we get (for arbitrary g € § and real 7)

g, = [ [ (L+10P) 1§ (@, o)} dodo.

Replacing g by D;f and 7 by p+r — |a| and using (3.7) we obtam (I).
Suppose now that (a) holds. Then g is of the form

(3.8) 9= Z‘ d,(8) D" 3 ()
fel<a
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with some d, € D’(R"*'~") (the sum is finite because g is a tempered dis-
tribution, hence of finite order).

It remains to show that (3.2) holds. Let us choose a function
p € O°(R’) vanishing outside the unit sphere and equal identically to one
in a neighbourhood of the origin. For fixed # (0 < {8| < ¢) and for any
@ € OF (R"'~") we put
. . a?
(3.9) ¢ (@, 0) = v(lw)¢p(a)737

with 2 = (L4 |o[*)"2. It is easy to verify that the right-hand side of (3.9)
belongs to 8, ,. Therefore, ¢ is well defined and

for a # 8,

. L
(3.10) D2gp(0,38) = {%(a) for a - p.

Let now 8> 0 be chosen so that —k4-J is a non-negative integer.
Using (I) with p = —k 4 we have
BAL) lpltars,—ra <o D [ AN [1Do(s, o) Pdads.
o<|yl<—8+d pn+l—v R’
But

Alvi-181
(3.12) Dip(w, o) = B $5(0) xy,5(4),

where 2, ,(¥) = D'[¥*9(y)] (y € F’). Substituting y = 42, by (3.12) we
obtain

(3.13) [ 1D%p(a, o) do = 0,21 gy (o)
with ’
¢.5 = (B éf | 2,0 (¥ dy.

Now (3.11) and (3.13) yield
(3.14) P2t ro,—r—8 < Oll@all2—r1=vs2 -

It follows from (3.8) and (3.10) that
(3.1b) g, 9> = (—1)"<dy, ).

As geH,_,,..4) W6 can write

K9y #)| < 9llk-o,e+8 Pl x40, —r—05

9 — Colloquium Mathematicum XLVII.1
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which, together with (3.14) and (3.15), yields

(3.16) |<dp, ‘Pp>| < ”‘Pp“—k-r—lﬂl—v/z .

Since ¢; was arbitrarily chosen, (3.2) follows from (3.16).

To complete the proof it remains to estimate the number ¢ occurring
in (3.8). Without loss of generality we may assume that d, does not vanish
for some a with |a|] = ¢q. Now we have

(8.17) (6 =Qo; )+ Y dao(0)ds(0) £,
lal+18l<2g
where
Qo; &) = D di(0)dy(0) &,
lal=1Bl=gq
. In the sequel of the proof we need the following:
(II) Let
A = {o: Q(0; ") does mot vanish identically in &}.
Then mes A > 0.

(IIX) For an arbitrary fized o € A there exists a cone A, = R’ and a posi-
tive number a, such that

(3.18) §(&, o) > a, 1€ (Ee4d,).

To prove (II), suppose that mesA = 0. Then @(o; ) vanishes iden-
tically in & for almost all o. But

Qo5 &) =| Y du(o) &°

la|=¢g

2.
)

therefore, for all |a| = ¢ the Fourier transform d:, vanishes almost every-
where. Thus all the distributions d, (|a] = q) vanish in the sense of &',
which yields a contradiction and completes the proof of (II).

To prove (III) let us put & = ¢y with ¢ = |£| and |5| = 1. Then

(319) (£, ) = Qs+ D du(0)dy(c) e+ g,

lal+181<2g

As @Q(o;+) is a continuous non-negative function which does not
vanish identically, there is a domain &, of the unit sphere such that

(3.20) Qosn) =0, (nel,)
with some positive constant ¢,. Aceording to (3.19) and (3.20) we have

(3.21) 1§ (&, o) = et — M+,
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where M, depends on max |¢ia(a)|. Putting
0<lal<g

A, ={teR:t>2M,, e85},

we get from (3.21) the inequality (3.18) with a, = Cq/2.
Now we can complete the proof of the theorem. It follows from (a)
that the integral

[+ 1E2+ 1oL+ 10P) 1§ (£, 0)2dé
R’

cbnverges for almost all o, particularly, by (II), for some ¢ = o, € A.
Then in virtue of (III) the integral

Jo= [ (L4 1EF+ o) |48
Ad
0
i3 also convergent. Introducing the spherical coordinates in R’ we see
that the convergence of J, is equivalent to the convergence of the integral

00

f {2k+2a+r-1 dt;

1

therefore we have 0 < ¢ < —k —»/2, which yields (b). The proof is com-
plete.

THEOREM 2. Suppose that g € H,, , with k < — |2 and suppg s contained
in the hyperplane @ = 0. Then the following statements are equivalent:

(a) g vanishes in the half-space t < 0.

(b) All d, occurring in (3.1) vanish for t < 0.

Proof. It is evident that (b) implies (a). To prove the converse let
us put, for fixed g (0 < 8] < —k—7/2),

o
y(z,8) = n @5 (8)

with arbitrarily chosen gz € €3 (R"*'~"). Obviously,

0 for a # 8,

Dev(0, ) = {%(s) for a = B,

and therefore, according to (3.1),

g9,9> = (—l)lpl {dg, @

It is evident that @ vanishes for { > — 4 (with some 6 > 0) if and
only if so does y. Therefore (a) implies (b).
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From Theorems 1 and 2 we have immediately

COROLLARY 1. The following statements are equivalent:
(a) q € Hif, and suppg is contained in the hyperplane v = 0.
(b) If k < —»[2, then g i8 of the form

g = 2 Ga(s)Daa(w)7 whm‘e ca EHI-CF+r+vI2+|a|;
lal<—k—»/2
if k> —»/2, then g vanishes.
Remark. In the special case where » = n-+1 (so the distributions

under considerations do not depend on s) Theorem 1 (without proof) can
be found in [4].

4. Formulation of the boundary value problem. Let us now consider
the following differential operators with constant coefficients: P(D,, D, , Dy)
of order m and B,(D,, D,, D,) of order my, where # is a multi-index in R".
We make the following assumptions:

(A,) P is hyperbolic with respect to ¢.

(A,) P(&,0,0) 0 for £ # 0 (this means that the hyperplane # = 0
is not characteristic with respect to P).

(As) The operators P and B, consist only of terms of the highest
order (so the polynomials P and B; are homogeneous).

We shall deal with the following boundary value problem (= ,):
Find a distribution « satisfying the conditions

(4.1) e Hf,,
(4.2) P(D,,D,, D)u =0 for » #0,
(4°3) Bﬁ (D:m Dy’ Dt)'"’lzao =¢p (Iﬂl < l)

with given g,. The number [ of boundary conditions will be defined in the
sequel. The boundary value in (4.3) is to be understood in the sense of
trace, therefore we have to assume

(4.4) k> my+7[2.
Equation (4.2) can be written in another form, namely
(4.5) P(D,, D,, Dyu) = f,

where f is in H_,, . and vanishes in the complement of the hyperplane
z =0.
PROPOSITION 5. Every solution of (=), if ewists, is of the form

(4.6) u =f*E.
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Proof. It follows from Proposition 1 that the convolution »*E is
well defined. According to the well-known properties of the convolution
product we have P(u*E) = uxPE and, otherwise, P(usE) = PuxE.
Since PE = 4, we obtain (4.6). The proof is complete.

In virtue of Corollary 1 we have now two possibilities. If k¥ > m —»/2,
then f vanishes identically, and so does % according to (4.6). In this
case (m,,) has no solution if the boundary data g do not vanish. In
the other case, where

(4.7) k<m—v[2,
we have
f(@,8) = D 6.(8)D"8(a),
lal <dg

where ¢, e Hif o _puivpppio 20d [, = m—k—v/2.
According to. Propesition 5 we shall seek the solution in the form

(4.8) u(®@,8) = D ¢,(s)D"6(z)*«E(a, 8),

la)<ly

where the unknown distributions ¢, are to be defined from the boundary
conditions (4.3). Therefore, it is natural to put I = I,.

5. Certain integral formulas. In this section we obtain integral formu-
las for the convolutions occurring on the right-hand side of (4.8) and for
their derivatives. Introducing the notation

Uq (T, 8) = 0,(8)D*8(w)*B(w, 8),
we have
PROPOSITION 6. Suppose ¢, € 8, (R"*'~’). Then

-t Y . -1 £q+?aa(C0)
(5.1) e ' Dlu,(®w,8) =F —-P—(e’—c“)—]

This follows easily from Propositions 1 and 2 in virtue of (1.1}
and (1.2).

PRrROPOSITION 7. Let

1&]

Gp(C) = Y
& IP(&,0)

dt (¢ e R~ —il,)

dﬁ = 'ﬁl'—m"l"v.
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If dg <0, then
(a) G5 i8 a continuous function, homogeneous of degree dg;
(b) for £ = {, the estimate

(5.2) G5 (Lo) < o(L - |af?)IPrHnh

holds.

Proof. Statement (a) follows immediately from Proposition 3.
To prove (b) it is sufficient to estimate @; on the unit sphere in C*+'~”,
According to Proposition 3 we have

&)
| sty <o

161>B
and (1.2) yields
Ieal ( co ) -1
dé < ¢, |P0,Im |
wivn P (&5 ol 1Zo)] $< 0 TN
But
Im&_ — (1+ lo_lz)_llzno’
ol
therefore
tei<B [P (&, Lol1Zol)| ’

and so (5.2) holds.
PROPOSITION 8. Suppose |a|+ |y| < m—» and c, € H with

1
(5.3) P> lal+ Iyl + 5 (n+1+9).

Then the integral formula for the inverse Fourier transform on the right-
hand side of (5.1) holds.

Proof. It is sufficient to prove the convergence of the integral

[ 16a(C0)|Gayy (L0)do;

Rn-}-l—v
this can be done by using (5.2) and the Schwarz inequality in L,(R"**'~").

COROLLARY 2. Suppose that ¢, € HY with p satisfying (5.3). Then for
lyl <mg; and |a| <1, we have

(5'4) D;ua |z-o = (2”)-"-1 f [exp('i(87 co)"éa(CO)Ia-i-r (Co)dO',

R’H‘l -
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where

I(¢) = f—g-p-—de (¢ e R*1" —iI,).
g & P(£,0)

6. Reduction of the boundary value problem to a system of convolution
equations on the boundary. Now we shall construct the linear system of
convolution equations from which the unknown coefficients ¢, can be
computed.

PrOPOSITION 9. If d; <O, then
(i) I(Z) i a holomorphic fumction in R™ =" —4il;
(ii) I, 48 homogencous of degree dg;
(iii) for every closed cone L < I', there ewists a positive consiant ¢
such that

(6.1) Hg(OI < ¢[Im ™™

for e R**'"—4iL, |£] =1, Im{ # 0.

Proof. The same reasoning as in the proof of Proposition 4 shows
that I, is of class C' with respect to the real variables o; and n, . Moreover,
the derivatives D,j and D, can be taken under the sign of the integral.
As the integrand is obviously a holomorphic function of {, it satisfies the
Cauchy-Riemann equations, and so does I. This gives (i).

Statement (ii) can be verified immediately; it remains to prove (iii).
Using Proposition 3 (with K being the unit sphere) we have to estimate

two integrals, namely [ and f . The second one converges uniformly
| IEI<B . 141>B
with respect to { and may be estimated by a constant. For the first one we

have from (1.2)
fﬂ
P(§,0)

d&l < e¢|P(0,Im{)|™
IE1<B

(with ¢ depending on B) and, by the homogeneity of P,

|P(0, Im¢)|~! < ¢z![Im¢|~™, where ¢; = inf |P(0, n)|,
In|=1
nel

which yields (iii).

According to (4.4) we have d,,, < 0 for a, y under consideration.
Thus in virtue of Proposition 9 and Theorem I formula (5.4) can be re-
written as

(6'2) -D;'u’a lz-o = (27‘:)_'6‘11-1 [éa(go)Ea+y(C0)]7
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where E, is a tempered distribution with Eﬁ(C) = I;({) (¢ € R*'~"—iT,)
and suppE, < I'y. But, in view of Propositions 1-3, we have

éaEa+y = F[e-‘(oa*Ea+y)]’
80 (6.2) takes the form
(63) -D:ua Iz'=0 = (2ﬂ)_'ca*Ea+77

and the boundary conditions (4.3) yield the linear system of convolution
equations

(4) D) dgaxea =95 (IBI<U),
lal <l
where
(6.4) da(8) = 2m)" D by (D) By (8)
) lrI<mg
and

By, = 2 bg, (D,).Dy.

I7I<mg

THEOREM 3. Suppose that ¢, € Hf ,  a.,2 98 a solution of (A)
and thatl

n+l—vy
> — .

(6.5) 5

Then (4.8) gives the solution of (w,,) and the following estimate holds:

[alie,r < €lCalkctrtia) 4oz
If, moreover,

n—+1—
(6.6) r>—+2—”—+m,

then, conversely, each solution of (m,,) 18 of the form (4.8), where the
distributions ¢, € Hif .\ a1v2—m 30ti8fy (A). ‘

In this sense the boundary value problem (m,,) and the sysiem of con-
volution equations (A) are equivalent.

Proof. It follows from (6.5) that the assumptions of Corollary 2 are
satisfied and, therefore, (A) is equivalent to (4.3). To prove the first part
of the theorem we have to show that w given by (4.8) belongs to H;,. It
follows from the well-known properties of the convolution product that
SUppu, is contained in the half-space {{ > 0} for each a, and so is . It
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remains to prove that
(6.7) etu,eHy, (lal <)
or, equivalently, that the function
Wa e (€5 0) = (1€F 4 18IV EolUa (o)
belongs to L,(R"*!). By (5.1) we have
(6.8)
Wokrligmney = [ 16 lealCa [ (167 + 120"
o

Rrtl-r

§2a
——— dédo.
1P (£, Co)i?

As the integrand is a non-negative function, it suffices to prove the
convergence of the iterated integral. Substituting & = |{,/]e we can re-
write (6.8) as

(6.9) g, 7, mn+1) = f l¢o|2(k+r+|al—m)+'|éa(Co)|2Fk‘a( o )da,
[Col

RA+1—7
where

P (0) = [ @+op)—2— do.
e (0) R[( +lelf e 9

To estimate the function F, , we use Proposition 3 (with K being the
unit sphere) and (1.2), obtaining

(ICOI)

Thus the integrand on the rlght-hand side of (6.9) does not exceed
the function ¢(14 |o?)*+r+1e+72|¢ (£,))* which is summable over R"*'~",
according to our assumptions. Thus the first part of the theorem is proved.
The second part follows from the preceding investigations if we remark
that (6.6) yields the assumptions of Corollary 2.

7. Solvability of the system (/1) and of the problem (7, ,). In virtue of
Theorem 3 the boundary value problem under consideration is reduced
to the system of convolution equations (A4). To study its solvability let

us introduce the matrix ﬁ(c) = [fl,a((;)], where
(7.1) ldpa (211.‘ 2 b‘y 0+}‘ C (CER”+1—1_1:I10)
|?|<1np

is the Fourier transform of (6.4). Our further considerations will be based
on the following assumption:

e(L+ o)™,
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(As) There exists an open convex cone Iy = I'y with the following
Pproperties: 3

(1) mo€L'g; .

(ii) for every closed convex cone L < I'y there are two numbers
¢>0 and 6> 0 such that

(7.2) |det D(Z)| > ¢[ImZ|°

for { e R"*'~*—iL, |{| =1, Im{ # 0.
It follows from (7.2) that the matrix D(t) is non-singular in R*+'~" —
—Il'y. Let R({) = [r,5({)] be its inverse.
PROPOSITION 10. Assumption (A,) implies the following statements:
(i) the functions r,; are holomorphic in R™'~" —il;
(ii) r.s 48 homogeneous of degree m —my;— |a| —v;
(iii) of 8, is the dimension of the matrix f)(C), then

(7.3) Irap($)] < ¢[Tm {|~Ck—m=0

for e R**'=*—iL, |£| =1, Im¢ # 0.
Proof. As is known,
Dﬂa(C)

7.4 — Zpal®)
( ) raﬂ(C) detD(C)

where ﬁﬂa(C) is the algebraic complement of the element d,,({). Thus (i)
follows from (7.1), (7.2), and Proposition 9. Let us note further that the
polynomials b, are homogeneous of degree m;— |y|; therefore by (7.1)
and Proposition 9 the function &,a is homogeneous of degree mg—-|a| —
—m+v. So (ii) follows from (7.4) by elementary reasoning. Estimate (7.3)
follows easily from (6.1) and (7.2). The proof is completed.

Let now 6, be a non-negative number such that (7.2) is valid with
6 = 6, for the cone L consisting of all vectors of the form in, (1> 0).
Putting for the sake of simplicity

P =k+r—v[2+ms, 4 6,

We can prove now our main result:

THEOREM 4. Suppose that assumptions (Al) (As), (Ag) hold and that
r > (n+1—v)/2. Then for an arbitrary gseH _,,, (18l < 1) formula (4.8)
with ¢, computed from (A) gives the solution w of (azk ») satisfying the energy
inequality

(7.5) e <€ D) Galp-my-
1BI<lp

If, moreover, r > (n+1 —»)[2 +m, then this solution is unique.
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The proof will be based on the following

LEMMA. Let F, 5, (0) = 7,5(c—in) for a fized n € ['y. Then F, ;5 , € Oy

This lemma may be easily derived from (7.2) and Proposition 4 by
using the homogeneity of ﬁ( ).

Proof of Theorem 4. Passing to the Fourier transforms we can
write the system (A) in the equivalent form

(4) N dga(Lo)6a(Lo) = dp(Lo),s
laj <l
which yields
(7.6) Gall) = ) Tap(Lo)ia(Co)-
181<iy,

It can be immediately proved, by using Propositions 1 and 2, that
¢, defined by (7.6) satisfy (A).

By Proposition 10 and Theorem I, r,({) = g,s(5) (¢ € R*'~" —il),
where ¢,; is a tempered distribution with support contained in ry.
In virtue of Propositions 1, 2 and Lemma 4, identity (7.6) can be
rewritten in the form

Ca = 2 qaﬂ *g B
181 <ty
It is now evident that suppe, is contained in the half-space {t > 0}
if all the g,’s are. Noting that
Co
ol

Col = (1+10*)'*  and ‘Im = (1—la*)™"%,

from Proposition 10 we get
g (Co)| < (14 |af)m—mp=lel="+02  where 6, = (3, —1)m + 6,.

Thus (7.6) and the above-assumed regularity of the boundary data g,
assure that ¢, have the regularity required in Theorem 3, and so our
statement holds.

8. An example. We give here a simple example of a boundary value
problem satisfying conditions (A,)-(A;), (Ag). Let us put v = 2, n = 3, and

P(&,n,7) = (|§|2+772_72)2-

For k €[2,3), (4.7) is obviously satisfied and I, € (0,1]. Thus we
have only one boundary condition in the problem (=, ,). Suppose that it
is of Dirichlet type, so m; = 0 and (4.4) holds. Conditions (A,)-(A,) are
evidently satisfied; it remains to prove that (A,) holds. Thus we have
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to estimate from below the function

it
10 = [ 555

(for the sake of simplicity we omit the index 0). Obviously, it is sufficient
to estimate one of the expressions |ReI({)| or [ImI({)|. Simple calcula-
tions show that

(8P w) —4e?
(1) Rel(d) = | Tierrwrraer ¥
and
* _ €I* +w
(8:2) 1) = 4cf [(1§° +w)* +4¢’ a*,

whetre w = n* —1* —a?+ b, ¢ = vb—na, Re{ = (4, 7), Im{ = —(a, d).
" The cone I, is defined by

(8.3) a<b, b>0.
We also have
(8.4) 1L =+ +a*+ b =1,
which yields
(8.5) lw] < 1.

Evidently, we can restrict our further considerations to the case
>0 (if * < 0, then replacing (5, r) by (—7%, —7) we change only the
sign of ImI({)). Let us suppose now that (a, b) belongs to a closed cone
L < I'y and consider first the case where

(8.6) 7+ d.
Consequently, by (8.4),
(8.7) a’+b>1—d.
We have
aé
Rel = | ———
© (C)lq=1n0 f (lélz-l-W)z’

whence, by (8.5),

as
ReI(C)lq=y=o >f W = 2x > 0.
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For an arbitrary fixed d < 1 the integral ReI(() is a uniformly con-
tinuous function of real variables 7, 7, a, b. Therefore, there exists a
d, € (0,1) such that for 7, v satisfying (8.6) with d = d, we have

(8.8) ReI({) > x.

Suppose now that
(8.9) 2412 > d
and let 6 be the angle between the vectors (a, b) and ( — 7, ). There exists
a closed cone Iy, symmetric with respect to the z-axis, having the fol-
lowing properties:

(i) Iy = I';

(ii) there is a positive number d, such that

(8.10) |cos 6| = d,

for (n,7) e I'y, and (a,b) € L.
Now

le] =V a2+ b*Vn2+v2cos 0,
and therefore (8.9) and (8.10) yield
(8.11) le| = dod, Im ]

for (, t) € I'y,. Introducing the polar coordinates we get

= r (rtwr
ImI({) = —Sncof o) HATT

or, by the substitution 24w = p,
8.12 ImI({) = —4me | ——55-

Using (8.5), (8.11), and the obvious inequality
(8.13) ol <1,
we get

ede 1

8.14 f
. (0® +4¢*) =10

and therefore from (8.11) and (8.12) we obtain
2%
(8.15) ImI(5)| > < dody [Im{

for (n, v) € I'y, satisfying (8.9).
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It remains to prove this estimate for (7, r) satisfying (8.9) but lying
outside of I';,. In this case there is a positive constant », such that 72—
— 12> x,, and therefore

(8.16) w3 %.

It can be easily proved that the integral ReI({) is a uniformly con-
tinuous function of the parameters ¢, w in the set described by (8.5),
(8.13), and (8.16).

Moreover, we have

d
ReZ(D)omo > [ g = 2> 0,

and therefore there exists a positive constant d; such that
(8.17) ReI({)=»
for |¢| < ds. If |¢| > ds, then (8.12) and (8.14) yield

(8.18) ImI()| > % ds.

It follows from (8.8), (8.15), (8.17), and (8.18) that (A,) holds with
6 = 1 (not depending on the cone L). The energy inequality (7.5) con-
nected with the problem (=, ,) considered in this section takes the form

[%g,r < €191ktrta-
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