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A DUEL WITH SILENT-NOISY GUN VERSUS NOISY GUN *
BY

GERALD SMITH (BERKELEY, CALIF.)

1. A duel is a game involving two players, each with a gun and
one or several bullets, who start a fixed distance apart and walk towards
each other, firing his bullet(s) at the other player at such times as to
maximize his chance of hitting his opponent and minimize his own chance
of being hit. More specifically, if the players are A and B, the payoff
of the duel is +1 if A survives and B is hit, —1 if B survives and A is
hit, and 0 if both or neither survive. A’s object is to maximize the ex-
pected payoff and B’s object is to minimize it.

The accuracy function of each player is the probability of his hit-
ting his opponent by a shot as a function of the time elapsed from the
moment the players start walking until the shot is fired. It is assumed
the players walk towards each other with constant velocity, and the
total time it would take the players to meet is 1. The accuracy functions,
P(t) and @(t) for A and B respectively, are assumed to be everywhere
continuous and differentiable with a positive derivative everywhere and
such that

P(0) =Q(0) =0, P(1)=0Q1)=1.

In some duels, a player knows when his opponent has fired a bullet
by its noise, and in others he does not know because the shot is silent.
Among the duels already solved are the noisy-vs-noisy, noisy - vs-silent,
and silent-vs-silent duels with one bullet for each contestant, by Black-
well and Girschick [1]. The » bullets - vs-m bullets noisy duel was solved
by Blackwell and Girschick [1] for the case of equal accuracy functions.
The n bullets - vs- m bullets silent duel was solved by Restrepo [3]. Other
references to work on duels can be found in Karlin [2] in Chapters 5
and 6 and the notes at the end of the chapters.

* Prepared with partial support of the National Science Foundation and Office
of Naval Research of the United States Government.
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The duel analyzed in this paper is a silent-noisy -vs- noisy duel.
Player A has a silent bullet and a noisy bullet which must be fired in
that order, and player B has one noisy bullet. A strategy for A consists
of a joint probability density on [0,1]x[0,1] for its silent and noisy
shots with zero probability for the noisy shot to be fired before or simul-
taneous with the silent shot, and a strategy for B consists of a single
probability density on [0, 1] for its noisy shot. The players are assumed
to choose their firing spots via their respective probability densities and
fire accordingly unless the opponent fires and misses his noisy shot while
the first player still has a bullet left. In that case, it is assumed the player
waits until £ =1 for a sure hit. Clearly in any optimal strategies this
wait until £ = 1 after the opponent has missed his noisy shot is necessary
and will be assumed without further mention in all strategies for the
rest of this paper.

The payoff function will be designated by Z[S,, Sg], where S,
and Sp are strategies for A and B respectively, and it equals

Prob {4 alone survives} — Prob {B alone survives}

when 8,4 and Sz are adopted.
The duel is said to have a value 4 if

max minZ|[8,, 8] = min maxZ[8,, S| = 1,
SA&(? SBEQ SBEW SAE.CV

where o7 and # are the sets of A and B strategies respectively.
If the duel has a value 2, 8. is said to be an optimal strategy for A if

HlinZ[SAm, SB] = A
Spe#

Similarly Sg. is said to be an optimal strateqy for B if
maxZ (S, , Sg.] = A.

S qet

It follows from the above that if strategies S ,. and Sz, can be found
such that

minZ 8 ¢, Sp] = max[S,, Sp.],
SBE$ AVAEL(V/

then S, and Sp. are optimal and the value of the duel is Z[S,., Sp].
S, will be said to be optimal against Sy if

Z[S".»u Sp] = max [S.4, Sp]
SAEM

and similarly for Sp optimal against S,.
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It will be convenient to occasionally represent a strategy for B by
¢, or I, if B shoots at ¢ with probability one, or shoots via the distribu-
tion function F, and to represent a strategy for A by (b, c), or (F,¢),
if A shoots his silent and noisy shots at b and ¢ with probability one, or
shoots his silent shot via the distribution function F and shoots his noisy
shot at ¢ with probability one. In each case the meaning of the notation
will be readily apparent.

In the following sections, two particular strategies for A and B
will be shown to be optimal, and the value of the duel will be computed.
Then it will be shown that these strategies are the only optimal strategies.
The conclusion contains some remarks on related unsolved problems.

2. There is an optimal strategy for each player. The strategy
for A consists of an absolutely continuous distribution over an interval
for the firing of his silent bullet followed by a fixed point where 4 always
fires his noisy bullet. The strategy for B consists of an absolutely con-
tinuous distribution over the same interval as for A’s silent bullet plus
a discrete part at the same point where A fires his noisy bullet.

Before describing the optimal strategies, two constants z, and «a
will first be defined. Since P(f) and @ (t) both increase continuously and
monotonically from 0 to 1 there is a unique solution to the equation

P(r)+Q(x) = 1.

Let x, be this solution. Clearly 0 < z, < 1.
The expression

%vwmmdu

J QP

is a monotonically decreasing function of ¢ for ce(0,x,). This can be
seen from

d ‘ Q' u)dz{; Y -0 Q' (u)du B Q_’(c) _
Eﬂ“”!‘?ﬁﬁm}"QMJ s pt 90 WMPM)

%0
s Q' (un)du Q' (c)
_QMU~WWWW)_QMHQ

7 1 - Q’(u)d’u 1
<Q”{Pmc Q*(u) —QMPM]
Q'(0)

T POQ@)
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Also

Q' (1)Q(c)
hir()lf Q(ﬁ)()du>l.

This is seen from

Q (u)
f@ )
1 Q(c) 1 ) \
= P(w) [lﬁ Q(wo)] Ty T w0

Since this expression equals 0 for ¢ — %y, there is a unique number
a for which

" Q (w)Q(a)

Q* (u) P (u)

(1) =1, 0<a<u,.

The strategies D, for 4 and Dy for B are now defined as follows:
D4 consists of A firing his silent bullet in the interval @, x,) with
probability density

Q' (2)Q(a)
Q* () P (x)
and firing his noisy bullet at x,. Equation (1) insures that this is a well-

defined strategy.
Dy consists of B firing his bullet in [@, x,) with probability density
(1—2,) P ()P (x,)

g(x) =B 2 PYa)Q(x)

fla) =

where v, = P(x,)—@Q(xr,) < 1 and

o
@ f g

and firing his bullet at x, with probability 5. Note that from the defi-
nition of =,

(2) vy = P(x,) —Q (x, —2Q (wy) = 2P (xy)—1.

That this is a well-defined strategy is seen from

(1—wy) w) du B
ﬁ—i—fju dlu—,@[ljL Py szm]%l
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Dy is optimal against D,. This is seen from
Case 1) ¢ < a

Z[D,,c¢] = Prob {B misses at ¢} — Prob {B hits at ¢}
=1—Q(c)—Q(c) = 1—-2Q(c) > 1—2Q(a)
Case 2) cel[a, )
Z[D,4,c¢] = Prob {4 hits before ¢ fires}+

-+ [Prob {A does not hit before ¢ fires}]x
% [Prob {B misses at ¢}—Prob {B hits at ¢}]

—ff du+[1—ff (wdu][ ~@(0)+1—Q(©)]
:Q(“)af o ru-seif1-e f ]
= 1-20(a)

Case 3) First notice that if both duelists have a single bullet and
both fire at x, the payoff is

P (w,) [1—Q (2)]—[1 —P(20)1Q (%) = P () —Q () = 0p-
Thus

Z Dy, x,] _ffu)P ") du+[1—ff du]

* Q(a)Q' () N
. (1—@0)af Tt etn=1-20(.
Case 4) ¢ > x,

Z[Dy,c] = ff(u)P(u)du+[1— ff(u)P(u)du],

[P (@) — (1 =P (w,))] = 1—2¢(a)
since 2P (x,) —1 = v,, resulting in the same expression as in case 3. Thus

minZ[D,,¢] =1—20Q(a)
and if B shoots his bullet with distribution function F(1),

Z(D4, F(1)] = [Z[D., w]dF (u) > 1-2Q(a).
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Therefore the best B can do is 1-—2¢(a), and since Dy is, by cases
2 and 3, a combination of strategies, all of which give payoff 1—2Q (a)
Dy 18 optimal against D,. ,

D, is optimal against Dy, for suppose A fires his silent bullet at b
and his noisy bullet at ¢ > b.

Case 1) ¢ < z,.

If ¢ < a, A clearly improves his payotf by setting ¢ = a. So suppose
¢ = a. Similarly, if b < a, A improves by setting b = a. Soa < b < ¢ < B
may be assumed. (Equality of b and ¢ is allowed in this case solely for
convenience in the above reasoning. )

Z[(by C’)y DB] _‘Z[(by wo)f‘DB]

]

b b b
== [ 90Q(w)au+ [ 901 ~Q)]du4-P ) [1— [ g(uyan]+

=PI~ [ g0Qu)dut [ g(u)[1—Q(u)]du
b b

HPO—=14+P @) ([ g(uw)du+g)]} -

C

b b b
—{= [9Quau+ [ gtu)1—@u)]au+pm) [1— [ g(uau] +

F=POI]~ [ g@aut [ gu)(1—Q ) dut pug
b

b

= [L—P®[P ()~ L-POB[ gu) du-+p -

c
o

_{_’ f g(u)Q(%)du_i_fog(u)[l—Q(u)]du-E—ﬁ’vo”,

c

The expression in the brackets at the right equals
Zo o

(2P(c)~1)(f g(u)du+ﬁ) - (f g(u)du—2 fog(u)Q(u)du+ﬂvo)
= (fog(u)du) (2P (c)—2) +2 fog(u)Q(u)du+ﬂ(2P(c)—ZP(wO))

L Z(P(C)f g(u)du—f g(u)[l—@(u)]du)

c
Zo

< 2{[1—Q(m0)]f0g(u)du-f g(u)[h@(u)]du} < 0.

c

Since 1—P(b) > 0, this shows Z[(b, c), Dg] < Z[(b, @), Dy].
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Case 2) ¢ = xz,.

If b < a, clearly A’s payoff can be increased by setting b = a. So
it may be assumed bela, z).

A preliminary equation will first be derived,

\ © Plwyan 1 W (19 (wdu
D Pwew [~ Fwew | P

1 1 1

Q(a)P(a)  Q(xy) P () @Q(a)

from equation (1) and integration by parts.

b
Z[(b, x), D] = —fq w)Q (u)du -+ fg(u)[l~Q(u)]du+

b
+[1= [gtwan| Py —11—P ]f u)du

o

+[1—P®)] [ g(w)(1—Qw))du+[L—P(b)]po,

b

zy Zp

= — [ g(0)Qu) du+f wydu-+poy— [ g(w)Q (u)du+

a a

xy )
1 PO)[1— [ gwdut2 [ guQu)du—pu).
a b

This last expression in brackets equals

) 1—v,\ [ P(2,) 5  § 1 B —1,) P ()
A=Ft+ ﬁ( > )(P(a)) (“)("P(mo>+P(b>)‘ P(b)

and so

Z[(by x)y Dp]

B P 5 du 1
= —f (‘—*") (mo)f 2(Q)(u) "lgémm + B+ Pvy+ B (1 —wy) P (@)
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By the definition of p and equation (3) this equals

(1—v,) (P(oso)— 1;("““"))

14 pP@y

1+1_U°P(ag)(__i_i.___l 1 )

2 "\Q(a)P(a)  Q(x)(Pr,)  Q(a)
P (x,
(2—2P(x,)) (P(mo) - -15((”;)))
o 141 —P@))P(%)( 1 11 )
Q(a)P(a) [1-P(a)]P(m) Q(a)

2P (ay) (1— P (,) (1 - }_1__)
=1+-— — =1-20Q(a).
1 1
(1 *P(-%))P(-T'o) (—“‘“* )

Case 3) ¢ > xy, b < w,.
As in cases 1 and 2 it may be supposed that bela, x,).

b b :
Z[(b;0), Dyl = — [ g()Q(u)ydu+ [ g(u)(1—Q () du-+

b e
PO [1— [gewan] +1—P®))]— [ g (u)du+
a b
+ J g (L—QUu)) du+f(—Q () +1— Q).
; ,
But since —@(x))+1—@(x,) = v,, this expression is the same as

the one in case 2, and thus equals 1—20Q(a).
Case 4) b = x,, ¢ > x,.

Z[(b, ), Dg] = —f g(u)@(u)dw-f g(u)(1—Q(u)) du
+ﬁ[(1—Q(£U0))—Q($O)(1 *P(mo))]

%o ]
= [ g—2 [ gwQuautple, 1 Q) Pay)
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1—u, o P’ (u)du
= 1 () Pla [ e bl Q) Pia)
= B—pF(1 L 1 o P
=1—f—F(1—0p) (170)(— P () +P(a)) +5(@0+Q(mo) (wo))
1B L 5P )
0 P(a/) 0 0
L= f(l—ry) 2 gy,
<1—M _Uo)?(a) +28P (,)Q (%)

1
(1 —1,) P () ( _1)

L Y\ P(a) .
N ”’H1—@1,(90)(___1__#:w 11 )
2 YNQ@P(a)  Qag)Plxy)  Qla)
1 P ! 1
(1—my) (mO)(P(a,) — )
=1—— = 1—-20Q(a)
(1—%)13(%)( 1 )
Rl ot = 3 =1
20 (a) P(a)

from the definition of f and equation (3).
Case 5) b, ¢ > w,.

Z1(b, 0), Dyl = — [ gmQuydu+ [ g(w)(1—Q () du-tp(1—Q (z)) —Q (xy)

which is smaller than the first expression in case 4, and thus smaller
than 1—2Q(a). ‘

Thus the best A can do against Dy is to choose probabilistically from
strategies of cases 2 and 3. Since D, is a combination of strategies of
case 2, D, is optimal against Dg.

D, and Dy are optimal against each other and so by the remarks
in the introduction they are optimal strategies and the value of the
game is

Z[Dy4, Dp] =1—-2Q(a).

3. It will now be shown that D, is the only optimal strategy for A.
By the above analysis of cases 1 through 5 it is apparent that in any
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optimal strategy for A, A must shoot his silent bullet in [a,x,) with
probability one and must shoot his noisy bullet in [x,, 1] with proba-
bility one.

1t shall first be shown that in an optimal strategy for A4 he must
shoot his noisy bullet at xy with probability one. For suppose A always
shoots his silent bullet in [@, @,) with probability one, and if F (z) is the
probability A4 shoots his noisy bullet before a suppose F(x)) = 0 and
F(xy+) < 1. Call this strategy 8.

Define Sp, 0 <e<1—a, to be the strategy for B consisting of
the density function ¢(x) over [@, x) for the probability of B’s shooting
there and the probability g for B’s shooting at z,|-¢.

The conditional payoff

Z[84,8g,given B fires in [a, x,)]

is defined to be the probabilistic average of Z when S, and S B, are played,
averaged only over results where B fires in [@, %), and scaled up by the
reciprocal of the probability that B fires in [@, %)) as in the computation
of conditional probabilities. Other conditional payoffs are computed
similarly.

Z(8.4; 85,1—Z4[8.4, Dy]

= (1—p)(Z[S.4, Sp,, given B fires in [a, x,)])
+/3(Z[SA,SBE,given B fires at x,4¢])—
—(1—p)Z[S4, Dy, given B fires in [@, x,)) +
+p(Z[S4, Dy, given B fires at %, ])

= B(Z[SA,SBg,given B fires at xyte]—
—Z[84, Dy, given B fires at Zy])

= (Z[8.4, 8p_,given A misses silent and B fires at Xy+e]—

—Z[84, Dg, given A misses silent and B fires at Bl

Letting & always be chosen so that the probability A fires his noisy
shot at xy+e is zero, the expression in brackets equals

Zy+-e Zy+e 1

{f Pu)dp (u)— [ (L—P(u)dF () + (1 —2Q (,+¢)) fd]ﬂ(u)}—
~{ Q)1 —P (@) B2y 1) {1 —Q ()P (o) Pty +) + (1 — 20(ay) Jar )|
Zy+e Zgte

=— [ dF (u)42 [ P(u)dF(u)+ [ aF (u)—2Q (w,+e) de(u)~

-'L'0+£ $0+€
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— (2P (@) —1) F (@, +) — J' dF (u)+2Q () [ dF (u)

Zo+ o+
— 2 J — P (ay)) dF () +-2(Q () —Q (2 +)) de(u)
o+ Xg+ e
Zot+e 1
~Q(2eP () [ dF (1) —2eQ’ () [ dar(u)
&y Tote

as ¢ — 0, using equation (2) to obtain the next to last expression.
If ¢ is chosen small enough so that

deF(u) o
e N ..
J'Ju:d]ﬂ ) Ql(mo)

then the last expression in parentheses is negative.
Thus it has been shown that an optimal strategy for A will always
have the silent bullet fired in [e, x,) and the noisy bullet at z,.
Suppose in an optimal strategy S, for A, the probability that A
fires his silent shot at @ is p > 0. Then by the following

LEMMA. Let S84 and Sy be optimal strategies and a be in the support
of Sg. Then Z[8S4, a] equals the value of the game. If (b, ¢) is in the sup-
port of S, then Z[(b,¢c), Sp] equals the value of the game.

whose proof can be found in Karlin [2], p. 27, and the fact that ¢ is in
the support of Dy,

Z[84ya] = —Q(a)[1—p+p(1—P(a)]|+1—-Q(a)
= 1-2Q(a)+p(1—P(a)—Q(a)) > 1—2Q(a)

Thus in an optimal strategy A cannot shoot his silent shot at a with
positive probability.

To see that there is a unique optimal probability distribution on
[a, z,) for A’s silent bullet, let F(t) be the distribution function of the
silent bullet on [a,x,) for an optimal A strategy Sgp. Since Dy has
each point of [a,x,) for its support, if a <@, <>, <x, where
and x, are chosen so that the probability that A fires at x, or z, Is
zero, then

Z[8Sp,®] = Z[SF, x.].



Expanding each side of this equation,

f D) B () ) (1 f PO ) +(1— Q) (1 jlp(u)dmm)
= f Py (n)—Q (22) (1 f w)dF (u)) 4 (1 Q (2)) (1 — f 2P(e-t)dF(u>);
fp(u)dp(u) = (2Q (@) —1)(1— jZ_P(u)dF(u)) —(2Q () —1) x

x (1- f L) + 20 () 1) (1—f Py ar(w) -

— (20 (a) 1)(1ﬁfP Jar (u))

= 2(Q () —Q () (1~ f 2P(u)dF(u)) +(2Q(2,) —1)

X (—fP(u)dF(u));

(4) Q(wl)j PP () — [Q(2) @, - f f P(u)dF (u).

If  is any point in (a, z,), by letting @, and z, tend to x from below
and above in equation (4) we see the probability that A4 fires at z is zero.
Hence there are no restrictions on x, or Z, in equation (4) other than
@ < @y < &y < ¥. Dividing by @z, —x, and letting #; and x, tend to =
from below and above,

[ arw) .
Q(m)P(m)xlTEIilzwm S (3’(m)[1~(tfP(u)dﬁ’(u)].

P
This shows that f dF (u) is a differentiable function of for z in

[a, x,), and

ffa) =F'(2) = __Ql’.(m) [1— fP(w)dF(u)].
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Hence
P( )f ( ) — ’(5(?)* 4!1)(?1)][ (’M‘)(I'N].
Setting

The solution for which h(a) = 0 is

Bg) =1— 29 iy = K@) Q@@ @)

Q(z)’ - P(x)  Q*a)P()

from the definition of &(x), and hence f*(z) = f(x) and D is the unique
optimal strategy for A.

It will now be shown that Dy is the unique optimal strategy for B.

By case 1 under the proof that Dy is optimal against D, it is clear
that in any optimal strategy for B, the probability that B fires before
@ 18 zero.

Also in any optimal strategy for B the probability that B fires at
a is 0. For suppose Sz is an optimal B strategy with the probability
that B fires at a is ¢ > 0. Since all of [a, x;) is in the support of D 4,8
silent density,

0 =Z[(a,x,), Sp]—lim Z[(x, z,), Sg]

zla
= {—eQ(a)(1—P(a))+cP(a)(t —Q(a))+
+(1—e)Z[(a, x), Sz, given B does not fire at a]}—
—{—eQ(a)+c(1—Q(a)) +(1—¢) Z[(a, x,), Sp, given B does not fire at a]}
= cP(a)Q(a)—¢(1—Q(a)) (1 —P(a)) > cP(a)Q(a)—cP(a)Q(a) = 0.

An analysis exactly analogous to that showing A must shoot his
noisy shot at x, in an optimal strategy will also show B must never shoot
his noigy shot after z, in an optimal strategy .

To obtain the distribution funection for B’s shot let Sy be an opti-
mal B strategy and let x, } x and x,)x through values for which the prob-
ability B fires at x, or x, is zero in Sp. Since all of [a, x,) is in the sup-
port of A’s silent density,

Z[(2y, %), 8p] = Z[ (22, 2,), 85].
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Letting G(x) be the probability B fires before x, this becomes

—fQWWmM+foQWWMWHTMJfdmm+

+(1 Pcvl( fQu)dGu)JrJ 1—Q(u)d ())+

(L —=P (@) 0 (6 (2, +) — G (,))

:_fQ dﬂw+flfQuWW%HP()fde+
+(1—P(zy) (- IOQ(u)dG(u)+ fﬂ (L@ (u) dd (w)) +

+ (1 ’—P(wz)) Vg (G (@o+) _G(mo)) .

Collecting terms on the left side, this becomes

(P (@2) =P () 20 (6 (0 +) —C (w0) +-2P () [ Q ()i () +

zo+ 2,
—I—(P(wl)—P(mz))(f a(u)— [ (1—2Q(u))d(;(u)) = 0.

Dividing by x,—=, and taking the limit,

Zo+ B

P (@) (6 (20+) —G(20) —P' (@) [ a6 (u)— | (1—2Q (w) 6 (u))
[ a6 ()
= —2P(x)Q(x) lim 2

xlfxq;2!m $=> .’,Ul

This shows that in Sp the probability B fires at x is zero for all

in [a, x)) and that f dd (u) is a differentiable function of z for z e(a, x,).

Its derivative is

= Poe @ (1 E @+~ ) +2f Q) d6 (1))

o) = [ Qugw) = [ Quydt(u), wela,a,),

a a
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we have
4 _P’(.’.U) v ¢
h = 3P @) {1 =) (G (a5 +) — G (a00)) +2 (R (25) — T ()],
) P P’ 1—wv,
W)+ ) = P((j)){ S )|,
where |

BT = G(x+)—G (x,).

The solution of this equation for which %(a) = 0 is

h(x) = {1_% ﬂ*+h(mo)}{1— P(a)},

- 2 P(z)
9]
. h' (x) {1—@0 . }P(a)P'(x)
i — — ] 0 e e
O = 0w Uz P o)

Clearly

®) [ grdutp z[—g” ﬁ“rh(fvo)]P(a) |

and from equation (5)

o Uy n P(a)
(7) () u[ o P +h(mo)][1—P(%)].
Solving equations (6) and (7) for g and &(x,)
p = - .
N 1—v,  P'(u)du o
PP ] pen
P 1—vy [P(x) 1
(%) = 9 i [P(a) - ]
Therefore
iy J1=0% o 1=y T P(@) ]}P(a)P'(m)
re =5 [P(a) N P

!

1w PP@

2 PYa)Q(w)
and Sg is Dp, the unique optimal strategy for B.

4. The noisy-silent-vs-noisy duel where the first player must fire
his noisy shot first has as its solution an easy extension of the silent
-v8- noisy duel, solved by Blackwell and Girschick [1]. The density func-

Colloquium Mathematicum XVII. 1 10
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tion for the first player’s silent shot is the same in the noigy-silent-vs-
noisy and the silent-vs-noisy duels, and the first player always shoots
his noisy shot at a point a fixed distance ahead of where his silent density
begins. The second player shoots at this advanced point with a certain
probability, and if he doesn’t shoot there his conditional density for
the rest of the duel is the same as his density in the silent-vs-noisy duel.

An interesting unsolved duel is the silent-noisy-vs-noisy where
the first player may shoot either shot first such that when the second
player hears the first player’s noisy shot he doesn’t know whether or
not the first player still has his silent shot left. (P 586)

There also remains the still unsolved m by » noisy-vs-noisy duel,
with not necessarily equal accuracy functions. In fact, it is not known
whether this duel always has a value. If it did then a recursive process
could be used to solve each duel, by using the solution of the m by n—1
and m—1 by n duels to solve the m by = duel. (P 587)

REFERENCES

[11 D. Blackwell and M. A. Girschick, Theory of games and statistical deci-
sions, New York 1954.

[2] 8. Karlin, Mathematical methods and theory in games, programming and
economies, vol. 11, London - Paris 1959.

[3] R. Restrepo, Tactical problems involving several actions, Annals of Mathe-
matical Studies 39 (1957), p. 313-335.

Regw par la Rédaction le 30. 10. 1965



