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WEAKLY SIGN-SYMMETRIC MATRICES
AND SOME DETERMINANTAL INEQUALITIES*

BY

DAVID CARLSON (CORVALLIS, OREGON, U.S. A))

1. We shall discuss some related sets of inequalities which are com-
mon to the theories of totally non-negative matrices (cf. [1], vol. 11,
p. 98), M-matrices (cf. [5]), and positive semi-definite matrices (either
real symmetric or complex hermitian). First, we need some definitions:
if A =T[ay],4,j—=1,...,m, with complex elements, then let

A[l -k]:[a'-ipiqL P,qg=1,...,k,

JieeJr
A(’il-c-ik):detA[il...ik].
jl'--j!c Jl]k
Also, we will let {a 8 y} denote any partition of a subset of {1...n} into
three disjoint ordered subsets (not necessarily non-empty). If, for example,

a=(i...%), B =01.--Jg)yy = (k1 ... k), We will for brevity write afy
for the ordered subset (iy...dp ji...jq ky... k). If a =0, we define

als) =1

The set of inequalities we shall discuss are

by (ﬁ) (y) o
(1) A(ﬂy)gfl ﬂA g for all { a, 8, y}
and a generalization of (1), \
(2) A(E)A(Zg’;) <A(Z/”;)A(Z’;) for all {a, f, y}

A unification of several aspects of the theories of positive matrices
and positive definite symmetric matrices was posed as a research problem

* Research supported in part by U.S. National Science Foundation Grant
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by Taussky [6], who mentioned an unpublished unification by Ky Fan
of the proofs of (1) for totally non-negative and positive definite Sym-
metric matrices. A proof of (1) which holds for all nonsingular matrices
in the classes mentioned above had previously essentially been given
by Gantmacher and Krein ([2], p- 111-117); this note is based on their
work.

We define A to be weakly sign-symmetric if

(3) A(Z ﬁ)A(Z ;) >0 for all {u, f = (i), y = (j)}.

This is equivalent to the definition given by Kotelyanskii [3]. We
note that clearly all totally non-negative and positive semi-definite ma-
trices are weakly sign-symmetric. Tt ig proved by Ostrowski in [5] that,
if 4 is an M-matrix, then every principal submatrix of A is also an
M-matrix, and further, that each element of Adj A is nonnegative. This
implies that all M-matrices are weakly sign-symmetric.

2. Gantmacher and Krein prove ([2], p. 116)

Laee i 1L...p Bl vne 0
< A
" A(l---m)\A(l---p)‘l(erl...m)’ l<p<m,
under the assumptions that all principal minors of A are‘positive and
AR AN
(%) A(kl...ks)A(il __‘@'S)?O’

1<i <. o <ig<m, 1<k <...<k<m,

whenever 3'|i, —k,| = 1. As pointed out by Kotelyanskii, (cf. [1], vol
11, p. 103) these conditions are not sufficient; for example, if

201
123 1 23
= 2 = A == 0.
A 020[, 10 1(123)>A(1)A(23) 8
—1 0 2

Their proof of (*), however, is valid, if we assume (**) whenever
exactly one of 4, —k,, ..., ts—ks 18 non-zero. As a corollary ([2], p. 117)
of this result, they prove that

l...pp+1...¢q q+1...m) A(p+1...q)
l...pp+l...qq+l...m y i S R

L s p+1l...m
< Nl Jo tep<aan.
L oo P+l W

(***) A(
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Unfortunately this result requires still more; as a counterexample
under the stated conditions we have for

6 21
123 2 1t 2 23
a=froz] o )A()>A( )A( ):672.
123 2 12 23
066

This result (#*#*) requires that (**) be true whenever (i,...14) and
(ky ... k) have s—1 elements in common (i.e., our condition (3)). If we
assume that all principal minors of A are positive and (3) holds, their
proof of (###) holds mutatis mutandis. Thus (3) implies (2) (both for a =0
and « # @); in the following theorem we summarize the above discussion
and add a converse.

THEOREM 1. Suppose A has all positive principal minors. Then (2)
and (3) are equivalent.

Proof. By our above remarks, we need only prove that (2) implies
(3). We may assume without loss of generality that ¢ = (1...m—2),
p = (m—1),y = (m). We define D = [d;;] by

| a i .

dy = A 1 4y =m—-1,m.
aj

Now by (2) and Sylvester’s identity ([1], vol. I, p. 33),

o a a p a
det]) = A ( A ﬁ ¥ g A( / A ! = (lm,.__l 'm.__1dm ms
af \afy a B \avy ’ ’

so that

a p a

A( /) A( y) — dmﬁLmdm,mfl ; 0.
ay a f

The proof is complete.
In general, (1) does not imply (2) and (3); consider

213
A=]131
123

If A is non-singular and in one of the classes previously mentioned,
then it is known (cf. [4] and [5]) that all principal minors of A are poxi-
tive and the theorem applies. If A is singular and either positive semi-
-definite or an M-matrix, then for all ¢ >0, 4, = Al is either posi-
tive definite or a non-singular M-matrix and by continuity we have (1)
and (2) for A. If A is singular and totally non-negative, A4, is not neces-
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sarily totally non-negative, but (3) is still satisfied for 4, and again
by continuity (1) and (2) hold for A.

In general, if we assume only that the principal minors of 4 are
non-negative, (3) does not imply (1) or (2); consider the matrix

100 0|
0010
0001
(0100

3. We next discuss the case of equality in (1), generalizing the known
result for positive definite (cf. [1], vol. I, p. 255) and totally non-nega-
tive ([2], p. 113) matrices. We need two easily-proved propositions regard-
ing the reducibility of matrices (cf. [1], vol. II, p. 50) and a lemma of
independent interest.

PropositioN 1. If A is reducible, for each permutation (i, ... 1,) of
(1 oo ‘WL), a".liz aiz,;a wca ® aimil ==

ProrosrrionN 2. If A is irreducible, there exists a.product a; ;. Wjojy -
oo @ g 7 0, where each j,1 <j <m, occurs at least once as an index
(we may exclude elements a;; from the product).

Proof of Proposition 2. The existence of the non-zero product
in the statement is equivalent to: given any 1, for each j there exists
gy ..., 1% sSuch that Aiiy Wiyiy + -« @iy ; 7 0. To prove this, choose 4. First,
there exists an 7, so that @;i, 7 0; then there exists an i, so that either
i, # 0 or @i, Wipi, 7 0. Continuing in this fashion, we can clearly “con-
nect” ¢ to any j with a non-zero product.

LEMMA. Suppose A has all positive principal minors and satisfies (3)
(v.e., s weakly sign-symmetric). If

s+ L00)
()= ()

Proof. It is sufficient to prove the Lemma for a — (1,...,p—1),
B=(p),y =(p+1,...,m), where 1 < p <m. We define D = [d;] by

then

a1

dﬁ:A( .
4 3

)7 i,j;prp+l,-'-7”'l-
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Now again by Sylvester’s identity, D has all positive minors,. is
weakly sign-symmetric, and

I (IR
i3 (2
)40

which contains what we wanted to prove.

COROLLARY. Suppose A has all positive principal minors and is
weakly sign-symmetric. If

hi)=+)C)
Ll =l )

Proof. The proof is simple: by the Lemma,

(i) =GB - Ca )

THEOREM 2. Suppose A has all positive principal minors and is
weakly sign-symmetric. If equality occurs in (1) for some {B, v}, then

G

Proof. We may assume that g =(1,...,p),y = (p+1,...,m),
where 1 < p < m. The proof is by induction on m. For p =1, m = 2,
det A = a,,a,, certainly implies that a,,a,, = 0 and A4 is reducible.

By our Lemma and the inductive hypothesis, all of the matrices

then

18 reducible.

Al_l _], k< m,i, <p,i, >p for some ¢,r,
11---@]{

are reducible, so that by Proposition 1, for all such (i, ... %) we have

(4) ailiz cen aikil = 0.



By a eyelic product O(a) we shall mean a product @ijiy +++ @i, Where
@ = (i, ... %) is an ordered collection of distinct indices, Now the deter-
minant of A is a sum of terms of the form il s (g, s and each term
may be rearranged as a product of cyclic products C'(a;), where the o
are pairwise disjoint. If a term is ga product of ('(a;), each of which has
all indices 4, < p or all indices 7, > p, then the term appears in the ex-
pansion of the right-hand side of (1). If a term contains a C(«;) of the
form (4), then the term is zero. The only other possibility is for the term
to be a cyclic product with m indices (and factors).

We have therefore

(5) U =detd—a (Z) 4 (;)) = Z =UR AR R

We wish to prove that each of these terms is zero. Suppose
@iy v+ Uiy 7 0, With §, < p, 4, > p. Now a;; =0 for j+£4,,4,, or
otherwise a;;a;;,, ... @7, 7 0, contradicting (4). Similarly aj,; = 0 if
J # Jj1yJ2y ja. Continuing this process, we see that the only possible non-
-zero cyclic product with » factors is the one we have chosen. Then,
however, by (5), we have a contradiction. Hence all cyclic products with
n factors are zero.

Consider each product gy + -~ 4,5, in which each j, 1 < j < m, occurs
as an index. This product is a product of C(a;), where the a; are of course
not pairwise disjoint. As each J oceurs as an index, some (! (a;) must con-
tain indices j, < p, j, > P, and must be zero. Hence, by Proposition 2,
A is reducible, and the proof is complete.

We note that equality in (1) does not imply

e o s

For example, take g = (1 2), ¥ =1{3) in

101
4=]010].
011

Also, equality in (2) for some {a # @, p,9} does not imply that

A[aﬂy]
a fy
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is reducible. For example, for any choice of {a = (i), g = (j), y = (k)},
we have equality in (2) for

41 2
A=]|211
212

4. We conclude with a remark on real 3 x3 matrices.

THEOREM 3. Suppose A is a real 3 X3 matriz with all positive prin-

cipal minors. If (1) is satisfied, then all characteristic roots of A have posi-
tive real parts.

Proof. We first prove that 4 has no imaginary roots. Suppose A
has roots 4, +ui (4, w real). Then

Zaii=l>0, ZA(_J_):M2>0, det 4 = Au? > 0.
i )

i<y

From this we have

%9 2 3
detd = Ap® = Z“”iZA(z' j) o (2 3) - e

which is impossible.

Let Ay = A+tI,1> 0. It is easy to see that A; has all positive
principal minors, and that (1) is satistied; by above A, has no imaginary
roots +ui, so that A has no roots —f+ui with negative real parts.
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