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1. Introduction. A family F of convex bodies is said to be packed
in a larger convex body 7' if no members of F' have any points in common
and if their union is contained in 7. The family F is said to cover T if T
is contained in their union, where now members of F may intersect one
another. To avoid complications with respect to boundary points we
shall regard the members of F.as being open if they are being packed
in T, and closed if they are being used to cover T.

The “potato sack” theorem of Auerbach, Banach, Mazur, and Ulam
states that any family of k-dimensional convex bodies with diameters
at most D and with total volume 8 may be packed in some k-dimensional
cube whose size depends only on D and S. A key lemma in the proof
Kosinski [3] gives of this states that any family of k-dimensional parallele-
pipeds (rectangular, here and in general) with edges at most D in length
and with total volume V can be packed in a k-dimensional parallelepiped
with edges of length 3D, 3D,...,3D,(V-+D*)/D* ' In §2 it is shown
that this parallelepiped may be replaced by one with edges of length
2D,2D,...,2D,2(V4+D")/D*"; this yields a more efficient packing
when & > 3. In § 3 a corresponding covering problem is treated. Finally,
in §4 and §5 various special results for the case k = 2 are obtained,
which in some instances are best possible.

2. Refinement of Kosinski’s lemma. We first outline a proof of
our refinement for the case k = 2; when k£ = 1, the result is trivially
true.

Let there be given a set of rectangles with edges at most D in length
and with total area V. Increase the size of these rectangles by no more
than is necessary to change them into rectangles of size D/2' by D/2",
where j and k are non-negative integers. The total area of these enlarged
rectangles is certainly less than 47V.

Now consider the set of all rectangles of base D/2’ and height D /2%,
where j, k =0,1,2,...,0 <k <j but not ¥ = j = 0. This set may be
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packed, with room to spare, in a D by 2D rectangle by the scheme illu-
strated in Fig. 1.

Disregard temporarily any of the enlarged original rectangles of
size D by D and place each of the remaining ones in the rectangular
position of the same size situated in a larger rectangle of size D by 2D
according to this scheme. It may happen that several
enlarged rectangles are placed in the same position in
which case we proceed as follows:

If there are two or more rectangles placed in the
first position, of size D/2 by D, these are combined two
al a time to form D by D rectangles, which are disregarded
temporarily, until at most one D/2 by D rectangle remains.
(At most a finite number of rectangles can be placed in
any one position originally.) Next, if there are two or
more rectangles placed in the second position, of size D/2

Fig. 1 by D/2, these are combined two at a time to form D/2

by D rectangles which are then placed in the first position
until at most one rectangle remains in the second position. It may now
be necessary to repeat this procedure for the first position again before
proceeding to the third position, of size D/4 by D.

All positions in a given column are treated, working from the top
down, before proceeding to the next column. At any given position,
if two or more rectangles have been placed there they are combined two
at a time and placed in the preceding position until at most one rectangle
remains in that position. It may then be necessary to go through this
procedure again for some of the earlier positions before continuing the
next position. Each enlarged rectangle which was originally placed in
the D by 2D rectangle is shifted at most a finite number of times before
being placed in a position where it remains unmoved for the remainder
of the process. Ultimately, therefore, each of the enlarged rectangles,
with the exception of those used to form D by D squares, can be assigned
a position in the D by 2D rectangle such that different ones do not
overlap.

From the hypothesis on the total area of the rectangles it follows
that there remain fewer than 4V /D* squares of side D to be packed.
These can certainly be packed in a 2D by (2V /D4 D) rectangle. This
shows that the original set of rectangles may be packed in a 2D by
2(V+D?|D rectangle.

The argument in the k-dimensional case is completely analogous.
After the “shifting” process has been carried out so that there is no
overlapping between the enlarged parallelepipeds placed in a larger one
with sides of length 2D,...,2D, D, there remain fewer than 2"y | DF
k-dimensional cubes of side D. These can be packed in a parallelepiped
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with sides of length 2D, ..., 2D, (2 V[D* ' D). This suffices to complete
the proof of the following result.

TurorEM 1. Let there be given a set of k-dimensional parallelepipeds
with edges at most D in length and with total volume V. Such a set may
be packed in a k-dimensional parallelepiped with edges of length 2D, .

., 2D, 2(V+D" /D"

This, in conjunction with Kosinski’s lemma 1 (also proved earlier
by Macheath [1]), which states that any k-dimensional convex body
of volume S is contained in some parallelepiped of volume not more
than k! 8, provides a proof of the original theorem stated in § 1.

By a somewhat different argument it can be shown that a set of
k-dimensional cubes of total volume V can be packed in a cube of volume
2k, but we will omit the proof of this. Notice that this result would not
be true if 2V were replaced by anything less than 21y as is shown by
the example of two cubes each of volume V/2.

3. A covering theorem. The technique employed in the proof of
Theorem 1 can be modified so as to yield a result on the covering of
a cube by parallelepipeds.

THEOREM 2. A k-dimensional cube of side D can be covered by a set
of parallelepipeds satisfying the hypothesis of Theorem 1 if

2.4.,,. 9%
1 < 2.463.

V = e, (2D)*, where ¢ =
k( )1 k 1 3 (Zk 1)

We outline the proof for the case k = 2; when &k = 1 the result is
trivially true.

Let the sides of the original 1ectangle.s be decreased by no more
than is necessary to change them into rectangles of size D /2" by D/2
where j and %k are non-negative integers. The total area of these reduced
rectangles is certainly greater than V /4.

The identical procedure as described in the proof of Theorem 1
is now used to place many of these reduced rectangles into positions of
size D/2' by D/2" in a larger rectangle of size D by 2D in such a way
that no two reduced rectangles overlap and those rectangles which have
not been so placed have been combined to form squares of side D.

From elementary results on partitions of numbers (see, e.g., Rior-
dan [5], p. 111-113) it follows that the total area of the rectangular
positions of base ])/2’ and height D /2", where j, &k =0,1,2,...,0 <k <
but not k =) = 0,

D2[1~1/2)*1(1—]/22)‘1-—1] = ¢, D",

Hence, when the above packing and shifting process has been carried
out, at least one D by D square will have been formed from the reduced
rectangles if V/4 = ¢, D% or if V = ¢, (2D)"
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The rectangles may now be restored to their original sizes. This
suffices to complete the proof for this case.

A similar argument may be applied in the k-dimensional case. After
the packing and shifting process has been carried out so that there is
no overlapping between the reduced parallelepipeds placed in part of
a larger one with sides of length 2D,...,2D, D, at least one k-dimensional
cube of side D will have been formed if V/2* > ¢, D, or if V > cx(2D)",

If we restrict ourselves to coverings in which the sides of the cove-
ring parallelepipeds are parallel to the sides of the cube being covered,
then a best possible result would be to show that the conclusion of
Theorem 2 holds if only V > (kal)Dk. This follows from the fact that
with this restriction it is impossible to cover a cube of side D with 2% 1
smaller cubes.

Macbeath [4] has shown that any k-dimensional convex body of
volume ¥V can be used to cover some k-dimensional parallelepiped of
volume at least V/k*. (It seems likely that the factor 1/k* could be rep-
laced by %k!/k* but this appears to have been proved only for certain
special cases. See, e.g., Bambah and Roth [1] and Bielecki and Radzi-
szewski [2].) The following result, which can be considered the covering
analogue of the “potato sack” theorem, is proved by combining Mac-
beath’s result with Theorem 2.

THEOREM 3. A k-dimensional cube of side D can be covered by any
set of k-dimensional convex bodies with diameters af most D and total vol-
ume S, if 8 > e, (2kD)*,

4. Some sharper results on packing when %k — 2. It follows from
the result stated at the end of § 2 that any set of squares of total area A
can be packed in a square of area 44. We now show, among other things,
that the factor 4 may be replaced by 2.

THureorEM 4. Let there be given a set of squares of total area A, the
largest of which has side D. Such a set may be packed in any rectangle of
area 24 and shorter side B, if D < B.

For convenience we split the proof into two parts. We treat firsh
the case in which D < B2,

Place the squares in a rectangle of base B ac-
. cording to the scheme illustrated in Fig. 2, starting
0o-- in the lower left corner and continuing according
to decreasing height. Whenever a square would go
-p outside the rectangle, as indicated by the dotted
lines, it is used to start a new row. The second
square in each row is placed at distance D from the
left edge of the rectangle. This process is continued
Fig. 2 until all the squares have been packed in the rect-

—

1
1
|
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angle with base B. We now obtain an estimate of how high such
a rectangle must be.

Let w; denote the length of the side of the first square in the (¢+41)-st
row and let A; denote the total area of the squares in the i-th row plus
(w?_,—w}i). That is, the area of the first square in each row is counted
with the preceding row. When there are only a finite number of rows
w; and A; will equal zero from some point on.

From the definition of the packing procedure it follows that

A; = (B—D)w; for ¢=1,2,...

When summed over ¢ this becomes

A—D* > (B—D) Zw,;,
i

since the area of every square except the largest has been included. This
implies that the set of rectangles can be packed in a rectangle of base B
and height

D+ Y wi < D+(A-DY[(B—D).
it=1

This last quantity is less than or equal to 2A /B if B(BD—A)
< 2D(BD—A). But this inequality holds since D < B/2 and BD < B*|2
< 242 = A, using the fact that B is the shorter side of a rectangle of
area 2A. This suffices to complete the proof for this case.

The remaining possibility to be treated is that for some positive
integer n the inequalities d, >d, > ... = d, > B/[2
> d,,, > ... hold, where d; denotes the length of

the side of the ¢-th largest square. :I
The » largest squares can be packed in a rect- N
angle of base B in such a way that the total height U
required is 6 = Y d; (see Fig. 3). The packing process % P
i=1 |
continues according to the scheme illustrated in A

Fig. 3, starting with the square of side d,, which
is placed next to the one side d, and proceeding
according to decreasing height. The only difference
between the procedure for packing the remaining
squares and that described in the proof for the first
case is that now the second square in each new row
is placed at distance B/2 from the left edge of the rectangle.

Let w; denote the length of the side of the first square in the (n--1)-th
row and let A; denote the area of those parts of the squares in the (n—
—1 +44)-th row whose distance from the left edge of the rectangle is greater

Fig. 3
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than B/2, plus wj, for i == 1, 2, ... As before, when there are only a finite
number of rows these quantities equal zero from some point on.
From the definition of the packing procedure it follows that

i
A,;}EB’M’,; for ’i:1,2,...

When summed over 4, this implies that

2

A—6Bj2> V4, >

(X

B

Wy,

ot

Lo | =

Il
—

1=

since an area at least equal to 0B {2 formed by the n largest squares isn’t
included in the sum. Hence, the set of squares may be packed in a rectangle
of base B and height

A—6B/2

0+ Yw <o+ =% _94/B
Zl‘ i B ,

which completes the proof of the theorem.

By an argument similar to that used in the first part of the proof
of Theorem 4 it can be shown that any set of squares of total area A,
the largest of which has side D, can be packed in ga square of side
D+ (A—D*' . This is clearly best possible, in a sense. Unfortunately,
we are unable to obtain as strong results on the packing of a set of rectan-
gles in a larger rectangle. We state without proof the closest analogue
to Theorem 4 we have found. The packing procedure is similar to that
described above.

THEOREM b. Let there be given a set of rectangles with sides at most D
in length and with total area A. Such a set may be packed in any rectangle

of area 24 and shorter side B, provided that D < (V’E—i)B.

From this it follows that if D < (2—V2) A, then the set may be
packed in some larger rectangle of area 2A4.

The best general result in this direction that we have been able to
prove is the following

THEOREM 6. Let there be given a set of rectangles with sides at most D
in length and with total area A. Such a set may be packed in any rectangle
of area S and shorter side B, if D < B and S =24+ BY2.

Let each rectangle in the original set have its longer side horizontal,
Those rectangles whose base is at least as great as B/2 are placed one
above another in a rectangle of base B. The height required for this is
certainly no more than 20/B, where § denotes the total area of these
rectangles. The remaining rectangles are packed above these according
to decreasing height by a procedure which differs from that described
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in the first part of the proof of Theorem 4 only in the following respects.
No space is left between the first and second rectangles in a row and as
soon as any rectangle crosses a vertical line bisecting the large rectangle
with base B a new row is started with the next rectangle. The details
involved in showing that this construction implies the required result
do not differ greatly from those in the proof of Theorem 4 and are omitted
for that reason.

In concluding this section we mention the following unsolved problems.

1. What is the smallest number 8§ such that any set of squares of
total area one may be packed in a rectangle of base one and height S
(P 583) 7

That S > V3 follows from considering a set of three squares each
with area 1/3. Perhaps 8 = 1/3, but the most we can show is that § < 2.

2. What is the smallest number 7 such that any set of squares of
total area one may be packed in some rectangle of area T (P 584)?

That 7 > 1.2 follows from considering two squares of area x* and y?
where # > ¥y, #2+y* = 1, and the value of x(x{y) is maximal. Theorem 4
implies that 7' < 2.

3. What is the area R of the smallest rectangle in which can be
packed the set of rectangles of total area one and sides of length 1/n and

1/(n+1), for n =1, 2,...7 It can be shown that R < 113/96. Is R > 1
(P 585) ?

5. A sharper result on coverings when &k — 2. The technique used
in §4 can be modified to yield a result which is considerably stronger
than Theorem 2 when & = 2.

THrEOREM 7. Let there be given a set of rectangles with sides at most D
in length and with total area A. Such a set may be used to cover any rectangle
of area S and shorter side B, where D < B, if

and hence certainly iof A = 38.

Let each rectangle in the original set [~7777~ -
have its longer side horizontal. Place these
rectangles in a larger one of base B according
to the scheme illustrated in Fig. 4, starting in
the lower left corner and continuing according Fig. 4
to decreasing height. Whenever a covering
rectangle goes outside the larger rectangle a new row is started with the
next rectangle. The new row is directly above the last rectangle in the
preceding row, as indicated in the diagram. This process is continued
until the set of rectangles is exhausted.

T~

A >81+D/B)+BD, . '
|
|
|
|
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Let b; and h; denote the base and height of the rectangle in the ¢-th
row which goes outside the large rectangle being covered. If there is
no such rectangle, e.g., if the covering process terminates after a finite
number of rows perhaps in the middle of a row, then let b; and h; equal
zero. Also, let 4; denote the total area of those rectangles placed in the
i-th row.

From the definition of the covering procedure it follows that

B]l/¢>Ai+1_—bi+1hi+1 for i=1,2,...
Therefore,

B Y hi>A—(4,—bh)— D bihi = A—DB—D N1,
i=1 i=1 t=1
upon summing over ¢ and using the hypothesis on the size of the rectangles.
Thus, a rectangle of area 8 and shorter side B may certainly be covered

by the original set of rectangles if D h; > S8/B, and hence if
i1

(A—DB)/(B+D) > 8[B, or if A > S(1+D/B)+BD. This completes
the proof of the theorem.
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