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Let X be a Banach space and let #(X; X) denote the Banach algebra
of all bounded linear operators of X into X. A mapping €: (— oo, c0) —
- Z(X; X) will be called cosine function if it satisfies the d’Alembert’s
functional equation

(1) C(t+s8)+C(t—s) =2¢(1)F(s), —oo<s,t< oo,
and if, moreover,
(2) €0) =1.

According to Sova [3], the infinitesimal generator of such a cosine
function is the linear operator A from X into X, defined by the conditions

D(A) = {x: e X, s—limh™* (% (h)s— x)exists},

ko

Av = s—lim2h (¥ (h)w—x) for xeD(A).
h—0

As Sova proved, if Z(X; X)-valued cosine function #(t) is strongly
-continuous on (—oo, o), then 4 is closed and D(A) is depse in X. Moreover,
AeZ(X; X) if and only if €(t) is continuous on (—oo, co) in the sense
of the norm in % (X; X) and then

ad thAn
3 €(t) =1 .
(3) (® +,; a1
In the numerical case, i.e. if X = C (the field complex numbers),
then, as is known, all continuous solutions of (1)-(2) have the form
€(1) = 36’ +1e7",

where b is a complex numpber. This suggests the problem of a represen-
tation of general ¥ (X; X)-valued cosine function in the form

(4) €(t) = G (1)+3G(—1),
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where G (), —oco < t < oo, is a one-parameter group of operators belon-
ging to £ (X ; X). The paper may be considered as a step in this direction.
It gives three simple theorems and two examples which, perhaps, are
even more interesting.

THEOREM 1. Let X be a complexr Banach space and €(t) an £ (X; X)-
-valued cosine function bounded on (—oo, co) and continuous there in the

sense of the morm in ¥ (X; X). Then there is an operator Be £ (X; X)
such that

(5) €(t) = 3exp(tB)+3exp(—tB), —oo<t< oo.

Proof. In view of (3) it is sufficient to show that the infinitesimal
generator A% (X; X) of ¢(t) has a square root Be#(X; X). Since ()
is bounded, for every complex A with Rei > 0 we have

[ e @yt = A(#—4)"e 2(X; X)
0
and, therefore,
(6) |A(A2— A4)" Y| < M(Red)™', M = const, for Rei>0.

Consequently, |(A—A)~Y|| < M/ for every real 2 >0 and the exis-
tence of B follows from the theorem on fractional powers of closed ope-
rators given in the book of S. G. Krein [3], chapter I, § 5. Similar theorems
are to be found in the book of Yosida [4], chapter IX, § 11.

However, in our case it is possible to prove the existence of a square
root of A by more simple reasonings. One of them is the following. It
follows from (6) that the spectrum of A is contained in a subinterval
[—R,0], R >0, of the real axis, and

(7) I(A—4)~

g for — Arg i .
IS Tijcos(3Arga) [OF T AmA<T

Let C be the oriented rectangular contour with edges —<¢, ¢, — R—
—1+4,and —R—1—1. Then, for every ¢¢(0, }), the operator B,e £ (X ; X)
defined by Dunford integral

fl/—).—l—a—A) 1da,

271:'&
where /' denotes the main branch of the square root, satisfies the equality
B =A—e¢,

From (7) and from the Lebesgue bounded convergence theorem it
follows that there exists the limit in the sense of the norm in Z(X; X),

B = lim B, = prs u/ )~1dA,

e—>+4+0
and, obviously, we have B?> = A.
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Another proof of the existence of a square root of A in theorem 1
may be obtained by an application to ¢ = — A of the following theorem,

which, together with the proof, was communicated to the author by
Professor C. Ryll-Nardzewski.

THEOREM 2. Let A be a Banach algebra with the unit e over real field.
Let acA be such that (de+ a)~' exists in A for every A >0 and that

M
(8) ||(Ae+a)‘1||<7, M = const, for 2 >0.
Then the integral
1 [o o]
b =— f}.‘l’z(le—I—a)“ad}.
T
0

converges and b* = a.

Proof. We may assume that a # 0, because in the contrary case
there is nothing to prove. For any ¢ > 0 and > 0 consider the integral

b(t, ) = % f}._l’z((l—}—e)e—l—ta)‘l(se—l—ta)dl.
1]
Since

(9) (A4 2)e+ta)~Y|| = ¢!

and

(1-1—8

)<=
r e+ a <

= A4-¢

(6 e+ o 1) = o1+ et

for t > 0,e> 0 and 4 > 0, we infer that the integral converges at infinity

as well as at zero, and that b(¢, ¢) is a continuous function of ¢ and ¢ for
t>0 and £ 0.

Obviously, b = b (1,0) and therefore it is sufficient to show that
(10) b%(t, &) = ee+ta

for every ¢ >0 and ¢ > 0. If ¢ >0 and ¢, > 0 are fixed then, by (9), for
he(max {—1,, —¢/llall}, ¢/llall) we have

[o o]

b(t0+h7 8) = ((t0+ h)a+ 88):1;2(_ha,)nf1*1/2((1+8)e+t0a)—n—1d1
0

n=0

and so, for fixed ¢ >0, b(¢, ¢) is an analytic function of ¢ on [0, co).
Therefore it is sufficient to verify that (10) holds for every ¢ >0 and

te[(), —“%”—) But then we have

b(t, &) = (ta+ee) D) ea(e)(ta)",
n=0
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where

(=1)" r —1/2 —n—1 1 d"e'
(o) = ofz (o) ar = —

T

so that
2 ¢, (¢)(ta)® = (ee+ta)~ 12,
n=0

THEOREM 3. Let X be a Banach space and €(t) a strongly continuous
Z(X; X)-valued cosine function. Then there are: a Banach space Y, an
1somorphic imbedding £ of X into Y, and a strongly continuous one para-
meter group {G(t): —co < t< oo} =« £(Y; Y), such that

() +G(—1)F(X) c F(X), —oco<i< oo,
and
€)= 357G+ G(—1)F, —oco<it< oo.

Proof. As Sova [2] proved, for every strongly continuous £ (X; X)-
-valued cosine function %(¢) there are constants M and o such that

€@ < Me*, —oo<t< oo.

Let Y be the space of all X-valued functions x(s) strongly continuous
for —oo < 8 < oo and such that

sup e~ lw(s)l| < oo.
—00<8< 00

Under the norm

lwlly = sup e “|jw(s)lx
—00<8<00

Y is a Banach space. Let the operator #¢%(X; Y) be defined by
(fLx)(8) = F(8)x,xe X, —oco<8< o0,
Let G(t) be the group of left translations in Y. If xeX, then

[(@@)+G(—1)2](s) = €(s+t)a+F(s—t)w
= €(s)[2¢(t)x] = [L(2€(t)2)](s).
Consequently,
(G +@(—1)Fs =25%(1), —oco<it< oo,

which, is all we have to prove.

Example 1. Let X = (? the two dimensional complex space,
and let the £(C%; (*)-valued cosine function be represented by the
madtrices

1 ;tz)

e = (0 1
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Then its infinitesimal generator is a matrix

0 1
4= (
0 0
which has no square root. Hence there is no (2 X 2)-matrix B satisfying (5),

because otherwise we should have B? = 4. But if we put ¥ = C*® and
I (@, ¥;) = (0, @,, 0) for every pair (), x,)€C?, then

011 011
€(t) = 35 exp t(O 0 0) + exp —t(O 0 O) g.
010 010

This example shows, that the assumption of boundedness in theorem 1
is essential.

Example 2. Let Y denote the space of all complex functions of
real variable, continuous on (—oo, co) and periodic with period 2x. We

consider Y with the norm || = sup |»(s)|]. Let X be the subspace
082t

of Y formed by all impair functions. Let #%(f), —oo << t< oo, be the
group of left translations in Y, i.e.
(Z(t)a)(s) = x(s+1), xeX, —c0<s$,t< oo,
Let
€(t) = HEM+I(—)x, —oco<t< oo,

Then € (t) is an £ (X; X)-valued cosine function bounded and strongly
continuous on (—oo, oo). We shall show that there is no strongly continu-
ous one parameter group {G(f): —oo <t < oo} c Z(X; X) satisfying (4).
Indeed, the set {z,:n =1,2,...}, where ,(s) = sin(ns), is linearly
dense in X and if the projection operators P,,n = 1,2, ..., are defined
by the formula

2 ki3
P,w — (-T;ofm,,(s)w(s)ds)wn,

then, since [€(t)x,](s) = cosnt-sinns, we have
2 T
P, = —fcos(nt)‘f(t)dt.
T 0
Consequently, for any group G(t¢) satisfying (4), we should have

)
P, == f cos (nd) G(t) dt
s

and hence
(11) P, G(t) =QGH)P,, —oco<it<oo,n=1,2,...
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Since
€ ()P, = cos(nt)P,,

it follows from (4) and (11) that
G(t)Pn — eine(n)tPn

for every » =1, 2, ..., where ¢(n) = 1 or ¢(n) = —1, and, consequently,
(G(t)wn)(s) = cosnt-sinns— ze;n) [cosn(s+t)—cosn(s—1)]

= (€(1)2,) () + }(T *x,) (s +8)— (T *m,) (s — 1),

where T is a periodic distribution with Fourier series

0o

(f2) T~ 22@6 n)sin(ns) = Z (signn)e(|n])e™.

n=-—-oo

It follows that for every infinitely differentiable function ze¢X we
have

(@@t)w)(8) = (B(t)x)(s)+ (T *x)(s+t)— }(T*w)(s—1)

and so
IT+al < int (T+2)(s)+2 sup (G (0)al+2 sup [ (0)a].
082 0<i<2m o<i<2r
Since
1 21 1/2
inf (7 a)(s) < (5 f|T*w) ras)” = (5= [ ) < ai,
0<s<2r 271:o

it foll_ows that there is a constant C < oo such that

KT, 2] = |(T*2)(0)| < C sup |z(0)|
: 0<<o<2rt

for every infinitely differentiable function zeX. Since T is impair, it
follows that T is a measure. But this is in contradiction to a result of
Helson [1], which says that if the sequence of Fourier coefficients of
a measure takes only a finite number of distinet values, then this sequ-
ence can be made periodic by a change of values of a finite number of
its elements. Of course, the sequence &(n)signn, n =0, 41, 4+2,...,
which is impair and has only one element equal zero, cannot be made
periodic by such a change.

Let us remark that also without the theorem of Helson we may
prove that (12) cannot be Fourier series of a measure. Namely, it follows
from (12) that

1
- T
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where §, is the unit mass at zero and m is the Lebesgue measure. If T
would be a measure and 7, its atomic part, then 7, would be impair and
so T,*1 = 0. But on the other hand the atomic part of T*T is T,*T,,
so that T,*T, = §, and. {(T,, T,*1> = {(Jy, 1) = 1.

The example presented above shows that the assumption of conti-
nuity of €(?) in the sense of the norm in % (X ; X) is essential in theorem, 1.

A similar example may be constructed in the space of functions
almost periodic in the sense of Bohr. Namely, let Z be the space of all
complex, almost periodic, impair functions on (—oo, co) under the norm

el = sup |x(s)], @weZ,
—~00<8<0

and let #(f) be the strongly continuous cosine operator function in the
space Z defined by the formula

(€()@)(s) = da(s+ )+ Ea(s—1t), @eZ, —c0<8,t< oo.

Then, for any xeZ fixed, € (t)x is a strongly almost periodic Z-valued.
function of ¢ on (—oo, o0). For each 7 >0 let z,¢Z be defined by

z,(8) =sints, —oo< §<< oo,

and let the projection operator P, be defined by

T
1

P.x =( —f (sinTu)z (u )du) x,, xei.
T—o0 T

T
Since
€(t)xr, = (costt)x,,

it follows that if peZ is a trigonometric polynomial, i.e. if p = 2 a,x
then

77

T

P.p = 2 (hm — fcosrtcosrktdt)a;k = 8— hm— f (costt)€ (t)pdt.

a—ry T—oo _i T—»co

Since the set of all impair trigonometric polynomials is dense in Z,

it follows that
T

1
(13) Py =s— hmf f costt)€ (t)xdt, >0, veZ.
T—oc0

Using (13), we shall show that there is no strongly continuous one
parameter group G(¢) of bounded linear operators in the space Z such that

€(1) = 3G (1)+1G(—1).

8 — Colloquium Mathematicum XXIII, 1
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Indeed, if such a group G(¢) would exist, then by (13) we should have

T
1
P,o — s—1lim = f(cos-rt)G(t)mdt, r>0, veZ,
_

T—>00

from which we would get
P.G@1) =G@#)P,, 7v>0, —co<i< +oo,
and, consequently,
Git) XeX, —oo<i< +4o0,

where X is the space of all periodic, continuous, impair complex-valued
functions having period 2=. Hence G (t)|x would be a one-parameter group
of operators in the space X with the properties which are impossible
by the antecedent reasoning.
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