COLLOQUIUM MATHEMATICUM

VOL. XVII 1967 FASC. 1

ON INSCRIBING AND CIRCUMSCRIBING HEXAGONS
BY
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It is well-known that any closed convex curve has both inscribed
and circumscribed centrally-symmetric hexagons (see [2], p. 242). In [1]
it was shown that for a rotund and smooth convex curve € the set V
of possible vertices of centrally-symmetric inscribed hexagons is dense
in C. In this note we improve this result by showing, in particular, that
when (' is rotund and smooth V is, in fact, all of 0. We shall also prove
an analogous result for circumscribed centrally-symmetric hexagons.

The closed convex curve €' is called rotund if it contains no line seg-
ments and is called smooth if each point has a unique line of support.
Furthermore, we call a point «eC wedgeless if there is only one point on
C which has a line of support, not passing through z, which is parallel
to some line of support at «. A point zeC will be called non-flat if @ is
not interior to any line segment in €. Finally let H be the set of possible
intersection points of ¢ with circumscribed centrally-symmetric hexagons.
Then our results may be stated as

THEOREM. Let x be any wedgeless point on a closed convex curve C.
Then

(1) There is an inscribed centrally-symmetric hexagon having vertex .

(2) If @ is also a non-flat point, there is a circumscribed centrally-
symmetric hexagon tangent at .

In particular, then, when C is rotund and smooth we will have
(U =V = H. In general, however, neither ¥V nor H need be all of C.
For example, for the upper-half of the unit circle in the complex plane
we have H = C—{i}—(—1, +1)(*) and V = C—{—1, +1,4}. And for
a triangle with vertices a, b, ¢ we have H = {a, b, ¢} and V =C—{a, b, ¢}

Moreover, the conditions in the Theorem do not yield characteriza-
tions of V and H as one can easily construct examples where V contains
a “wedge” point and H contains a “flat” point. One unsolved question

() (a, b) denotes the open interval with end points a, b.
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is then: are there reasonable non-trivial characterizations of V and H
(P581) ? Another question would be: what is the class of curves for
which V= or H = (C? (P582)

The proof of the Theorem. Let 0 be any wedgeless point on €, 0*
its unique antipodal point and L and L* be parallel support lines at 0
and 0* respectively. Moreover, choose the coordinate system so that 0
is the origin, L is the line y = 0 and L* is the line ¥ = 1. Let 4 be the
open arc on (' measured counter-clockwise from 0 to 0* Let us regard A
also as a real open interval (a, b).

Proof of (1). For zeA let I{, consist of all midpoints of all inscribed
parallelograms having 0 and x as vertices. Then K, is a subset of the convex
curve (1/2) € and K, is clearly either a singleton set or a closed line seg-
ment. Now let k(x) be the directed distance along the curve (1/2) ¢ from
the right hand end point of K, to (1/2) 0*.

First it is clear that there cannot exist a sequence z(n) — b for which
each K, is a non-degenerate closed interval. Hence, in some neighborhood
of b, K, will always be a singleton set. This in turn implies that k is con-
tinuous in some neighborhood of ». Also since 0 is a wedgeless point it
is immediate that limk(x) = limk(z) = zero. From these facts it fol-

>0t x—sb

lows that there exists a horizontal line hitting the graph of k in two di-
stinet points, say, <{v, k(w)) and <{w, k(w)>, where, moreover, » and w
can be taken arbitrarily close to a and b respectively. This yields two
distinet inscribed parallelograms having the same center and having 0
as a vertex. By the choice of v and w and the fact that 0 is a wedgeless
point, the convex hull of the union of these two parallelograms will be
a non-degenerate hexagon, which will clearly be the desired inscribed
centrally-symmetric hexagon having 0 as a vertex. (Incidentally since
there were uncountably many choices possible for » and w it follows
that there are uncountably many such hexagons having 0 as a vertex.)

Proof of (2). Let 0* be a non-flat point and assume that € is not
centrally-symmetrie, otherwise the proof is trivial. Let M be the line
Yy = 4. For wed let [f,(x), fr(x)] be the closed interval on the line I,
formed by intersecting all lines of support at @ with L. Likewise let [¢ (x),
gr(x)] be the closed interval on L* (coordinatized in the obvious way)
formed by intersecting with L* all the “opposite” support lines parallel
to (and distinct from) the support lines at z. Finally let K, — [k, (z),
kr(x)] be the closed interval on M formed by intersecting M with the
closed trapezoid determined by the points corresponding to f,(x), fr(z),
gr(x) and gg(x).

In case C is rotund and smooth K, is always a singleton set and
3lelds a continuous function of xe A, which fact easily leads to the desired
result. In the general case we proceed as follows:
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Since fr, fr, 9 and gr are monotonic functions and kp = ¥|9r—/fzl
and k;, = 1|gr—f1|, we see that kr and &k will be of bounded variation
on each closed subinterval of A and thus they will have only jump dis-
continuities, countably many at most. Also since A can have only coun-
tably many corners, we have k; = ki except on a countable set. There-
fore it follows that kg(x) = kp(r+) = kp(x+) and kp(x) = kr(x—)
= kp(x—) for all weA.

Now let K be the graph of kp(or k) with the “jumps” filled in by
vertical lines. That is, put K equal to the union of the line segments
joining the points (x, kp(x—)> and <{x, kx(x-+)> as x ranges over all of 4.

Now we choose veAd such that (1) kr(v) = kg (v); (ii) » belongs to no
non-degenerate subinterval I of A for which kzi(u) = ki (u) = kr(v) for
all wel; and (iii) there are points of A above and below the line y = kg (v).
In fact, because € is not centrally-symmetric and because of the above
properties of kp and kg, there will be uncountably many such points .

Because 0 is a wedgeless point we have limkg(z) = limkg(z) =
r—>a r—b

1 the first coordinate of 0* (similarly for kz). Moreover K is clearly a con-
nected set. Hence, the line y = kp(v) must intersect K at least twice.
So let w # v be such that <w, kr(v)>e K. This means that K, ~ K, # O.
Then, letting ze¢ K, ~ K,,, there are, according to construction, lines of
support L, and L, at » and w respectively and corresponding opposite
lines of support LT and L; such that z is the midpoint of the line segments
joining L ~ L; and L* ~ Lj for ¢ = 1, 2. Because of the choice of v it
follows that the six lines L, L,, L,, L*, LT and L; are all distinct. Finally,
it easily follows that they will form the desired centrally-symmetric hexa-
gon circumseribing ¢ and tangent at 0. (Again because of the range of
choices for v there will be uncountably many such hexagons tangent at 0.)
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