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This note* contains a partial answer to a question, raised by J. B.
Fugate, asking for a characterization of those continua which are the
weakly confluent images of dendrites**.

A continuum X belongs to class & is understood to mean that each
connected subset of X is path-connected. A curve X is regular provided
that X has a basis of open sets each having finite boundary (see [5],
P- 275). It is known that every curve in class & is regular (see [11], p. 323)
and every regular curve is hereditarily locally connected (see [6], p. 283).
We understand that a mapping f from a continuum X onto a continuum Y
is weakly confluent means that if K is a continuum in Y, then some com-
ponent of f~!(K) is mapped onto all of K by f. Observe that each retrac-
tion is a weakly confluent mapping.

G is a graph is understood to mean that there is a finite collection
of ares {o;}7., such that

G = U ag
=1

and such that if e a;na;, ¢ # j, then 2 is an endpoint of both a; and a;.
T is a finite tree means that T is an acyclic graph.

We say that a continuum X is strongly regular provided that there
is a sequence of finite sets {8,}o., such that if » is a positive integer,
then 8, « X and X\S8, has just finitely many components and each
of these components has diameter less than 1/n. It is immediate that
every strongly regular curve is a regular curve.

* This research was supported in part by a grant from the National Research
Council. _

** The results of this paper originally appeared in B. B. Epps, A classification
of continua and confluent transformations, Dissertation, The University of Houston,
December 1973.
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ExXAMPLE 1. There is a regular curve which is not strongly regular.

Proof. Let X be the triangular Sierpifiski curve (see [5], p. 276).
Let B = {vy, vg, ...} be the collection of vertices of the triangles defined
in the construction of X.

Disjoint from X, let M be the union of all straight segments in the
plane with one endpoint (0, 0) and the other endpoint in

]

{(r, 0): 6 = ;', n=1,2,3,...,r = 0},
where (r, 6) are polar coordinates.

For each positive integer ¢, we consider a copy M; of M with the
diameter of M, less than 1/¢ and we identify the point (0, 0) of M, with
the point v; of E. Let

oo
Y=Xvu U M,

i=1
with the identifications indicated above and the identification topology.
That X is regular is well known, and it is then clear that Y is regular.
Y is not strongly regular, since any finite set 8, = ¥ such that each
component of ¥\ 8§, has diameter less than 1/n must contain points of ¥
for sufficiently large n. Hence, for such an n, Y\S§, has infinitely many
components, so that Y is not strongly regular.

The following example is-due to A. Lelek.

ExXAMPLE 2. There is a curve X which s an inverse limit of connected
graphs with monotone simplicial bonding maps and which ts not the weakly
confluent image of a dendrite.

Proof. The curve X is constructed in the plane. For each positive
integer n, let a, = (0, 1/n) and b,, = (1/n, 0). Let a, = (0, 2) and b, = (2, 0).
The curve X is the union of the straight line segment joining a, and (0, 0),
the straight line segment joining (0,0) and b,, and the segments
joining a, and b,. We shall show that there is no dendrite which can be
mapped by a weakly confluent mapping onto X.

Suppose that D is a dendrite and that f is a weakly confluent map-
ping from D onte X. For each positive integer n let

A, =ay0,9a,b,Vb,b,,

the union of three straight line segments. For each positive integer n
there is a continuum C, in D such that f(C,) = A,, since f is weakly
confluent. For each positive integer n, f/C, is weakly confluent, since
any mapping from a continuum onto an arc is weakly confluent (see [9],
p. 25). Therefore, for each positive integer n, there is a continuum K,

in O, such that f(K,) = a,a,. Similarly, there is a continuum Z, in C,
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such that f(L,) = byb,. The continua {K,}3%, and {L,}3, have large
diameter, so, since X is regular, there are infinitely many of the continua
{K,}n=1 Which have a point in common, say, xe (K, . Similarly, there
is a point ye r]L,,‘ for infinitely many of the continua L,,. Hence, there

are continua C, and C, (%, <m,) such that
{#, 9} & CpyCyy = 7 (A NAY) = [ (a9, Ubby,)-

But C, UC,, is a subcurve of a dendrite, so C, UC, cannot contain
a simple closed curve. This is a contradiction.

We distinguish the following six classes of curves:
(I) regular curves;
(IT) strongly regular curves;

(ITII) class &;

(IV) inverse limits of connected graphs with monotone simplicial
bonding maps;

(V) inverse limits of connected graphs with monotone simplicial
retractions as bonding maps;

(VI) weakly confluent images of dendrites.

We shall show in Theorem 4 that (V) = (VI). Tymchatyn has shown
in [11] that (IIT) < (I). We have observed that (II) Z (I), and it is trivial
that (V) = (IV). A. Lelek has shown that (IV) < (II). In fact, the inverse
limits of strongly regular curves with monotone bonding maps are strongly
regular. A. Lelek has also shown that (VI) < (I).

Remark (see [7], Theorem 3.6). As a matter of fact, the class of
regular curves is invariant under weakly confluent continuous transfor-
mations. To prove it, one can utilize a characterization of regular curves
by means of properties of collections of disjoint subcontinua (see [8],
p. 132). Since (IV) & (VI), it will follow from Theorem 4 that (IV) # (V).

We include the following questions (1):

(1) Is it true that each weakly confluent image of a dendrite belongs
to class (IV)?

(2) Which strongly regular curves belong to (V)% (P 991)

(3) Which regular curves are weakly confluent images of dendrites?

(4) Is it true that (V) < (III)?
(p) Is it true that (V) = (VI)?
(6) Is it true that (IV) = (II)?
(7) (

7) Is it true that (ITI) < (II)?

(!) E. D. Tymchatyn has recently answered questions (1), (4), and (5) in the
affirmative, thereby answering question (3), and has provided a reply in the negative
to questions (6) and (7) (see E. D. Tymchatyn, Weakly confluent mappings and
a classification of comtinua, this fascicle, p. 229-233).
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We wish to express our gratitude to Professor A. Lelek for his simplified
version of the proof of our Theorem 1 which follows.

THEOREM 1. If G i8 a connected graph, then there are a finite tree T
and a weakly confluent mapping from T onto G.

Proof. Suppose that @ is a graph, and let U be the universal cov-
ering space of G with projection map p. Considering G as a 1-complex,
let {S;}¥., be the collection of all simplicial subcontinua of @. Let f; be
a mapping from [0, 1] onto 8;for ¢ =1, ..., k. Let F; be a lift of f;into U

k

for ¢+ =1, ..., k. Define T, to be | F;([0, 1]), and let T, be a continuum
fm=1

in U which contains 7;. The continuum 7', is a finite tree. We observe
that the projection map p restricted to T', is weakly confluent with respect
to all simplicial subcontinua of @, that is, if S; is a simplicial subconti-
nuum of @, then some of p~'(8;) contains F;([0, 1]) and the restriction
of p to F;([0,1]) is a mapping onto ;.

Let {v;};.. be the collection of all 0-simplexes of @G, and let r; be
the ramification of ¥V;in @ for ¢ =1, ..., n. For an integer ¢, 1 < i< n,
let {w;}}t; be p~'(V,)NT,. For each integer j, 1<j<, we take r;
disjoint copies of the unit interval [0, 1] ;4 k¥ =1, ..., 7, and identify
the point 0 in each of these intervals with the point z;; with the identi-
fication topology.

Define T to be the finite tree

n i r
r.ouU U Lj [0, 1],

i=1 j=1 k=1
with the above identifications and the identification topology.

We extend the mapping p to a mapping f from T onto @G as follows.
If ¢ is an integer, 1 < ¢ < m, and if j is an integer, 1 < j <;, then each
of the r; ares [0,1];,4, kK =1, ..., 7;, which is attached to z;; is to be
mapped linearly onto only one of the »; arcs of G with one endpoint V;
with the condition that x,, is mapped to V.

We wish to show that the mapping f is weakly confluent. Let K
be a continuum in G. If K is a subset of some 1-simplex o of @ with one
0-face V, for some integer ¢, 1 <14 < m, then some arc [0, 1], ;¢ for some
integer k, 1 < k < r;, and for some integer j, 1 <j < l;, is mapped linearly
onto ¢ with its endpoints by f, whence there is some component of f~ (K)
which is mapped onto K by f.

Suppose that K is contained in no 1-simplex of G. Let M be the
largest subcomplex of @ which is contained in K. If M is not connected,
then M has at least two components, C, and C,, and C, and C, are con-
nected subcomplexes of @. Since K is connected, there is an arc a in K
from some point in C, to some point in C,. Let P be the last point on
this are which lies in C,. Since C, is a complex, P is a vertex of C,. However,
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a must contain a 1l-simplex ¢ having one 0-face P and the other 0-face
not in C;. Therefore, since M is the largest subcomplex in K, ¢ is in M
along with the 0-faces of o, s0 ¢ is in C, along with the 0-faces of ¢. This
contradicts the fact that P is the last point of a which lies in C,. Hence,
M is a connected subcomplex of G. Since the restriction of P to T, is
weakly confluent with respect to all connected subcomplexes of @, there
is some component C of (M) for which f(C) = M. Let Z be the col-
lection of 0-simplexes of M, and Z < {V};.,. Each component of K\ M
is an open set in K lying in some 1-simplex of ¢ and having only one
limit point in M which is an element of Z; if § is one such component
and Ve Z is a limit point of 8, then there is some integer j, 1 <j <,
for which #; ;¢ C and there is some arc [0, 1], ;; which is mapped linearly
onto the 1-simplex in G which contains § with the condition that ;e C
is mapped onto V,;. We see from this that C altogether with all such arcg
[0, 1]4,;,¢+ contains a component of f~!(K) which is mapped onto K by f,

Remark. We note that the mapping f constructed in Theorem 1
is both finite-to-one and simplicial.

THEOREM 2. Suppose that each of G, and G, is a connected graph,
G, c Q,, and that D, is a finite tree. Suppose that f, is a weakly confluent,
finite-to-one mapping from D, onto @,, and assume that r i8 a monotone
retraction from G, onto G,. Then there exist a finite tree Dy, a monotone
retraction t from D, onto D,, and a weakly confluent, finite-to-one mapping f,
from D, onto G, such that rof, = f,ot.

Proof. Suppose that @,, G,, D,, f,, and r are given as in the hypo-
thesis. We wish to construct the finite tree D, by, so to speak, appro-
priately attaching finite trees to .D,.

Let {V,}7., be the set of vertices of @;. For each ¢, 1 <i< n, let
{w; 14, be the set fi'(V,). We note that this set is, in fact, finite, since f,
is finite-to-one. Let G* be r~!(V,). Since r is a monotone retraction, G* is
a connected graph. Let D be a finite tree and let ¥; be a finite-to-one
weakly confluent mapping from D* onto G°. We wish to attach several
copies of D* to each of the points w,;forj =1,2,...,k,ands =1,2, ..., n.
For an integer i, 1 <i<m, let {@“}}%, be the finite set ¥;'(V,;). We
attach to each of the points w;; for ¢ =1,2,...,n, and j =1, 2, ..., k,
exactly p, copies of D at the points d*' of D%, 1 =1, 2, ..., p;, with the
identification topology. Consequently, for an integer ¢, 1 <t < n, we
have attached k;p; copies of D to D, . Let D, be the finite tree thus defined,

We define mappings f, and ¢. If xe D,, then either xe D, or there
is an integer 4, 1 < i <, for which ze D'. If xe D,, define f,(z) to be
fi(@), and if e D¢, define f,(x) to be ¥ (z). If we D,, define ¢(z) to be =,
and if xe D attached to D, at the point w;;, define #(x) to be w;;. Note
that the functions f, and ¢ are both well defined and continuous and that
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fiot =rof,. It is clear that the mapping ¢ is a monotone retraction.
We ~ee al<o from the con:truction and the definition of f, that f, is finite-
-to-one. We have then only to show that f, is weakly confluent.

Let K be a continuum in G,. Let K, = KnNG,. Since f, is weakly
confluent, there is a component C of f;'(K,) which is mapped onto all
of K, by f,. Considering D, as a subset of D,, let {y,,}%_, be the collection
of all vertices y of D, which have the property that ye C and y is a vertex
of some finite tree D* for some ¢ = 1, 2, ..., n. Note that if V; is a vertex
of K,, then »~'(V,)NnK is a continuum 3, in K which intersects K, at
only the point V,, since 7 is a monotone retraction. Hence, it suffices
to show that there is some finite tree, say D‘, which has been attached
to, say, the point ¥, ¢ {y,,}%,_, which has the property that there is a
component C of D’ mapped onto all of M* by f, and containing the point y,,.
To see that this is so, we merely recall the way in which finite trees have
been attached to D, at y,,; there are an integer ¢ and an integer j, 1 < ¢ < n,
1< j < k;, such that y,, = o, ;. p; copies of the finite tree D’ are attached
to the point o;; at the points Y;'(V;) = {d"'}f; of D’. Hence, such
a finite tree exists, since the maps ¥; are weakly confluent. Thus, f, is
weakly confluent.

The following theorem is due to Read (see [10]).

THEOREM 3. Suppose that a metric space Y is an inverse limit of an
inverse system (Y,, P2, A), where each of the spaces Y, is a compactum
and each P2 is surjective. Suppose that f is a mapping from a compactum X
onto Y such that P,of is weakly confluent for each aeA. Then f is weakly
confluent.

Proof. Suppose that ¥ = lim(Y,, P2, A), where Y, is a compactum
for each aed, and the map P? is surjective for each a, fcA. Suppose
that f is a mapping from a compactum X onto Y such that, for each
aeA, P,of is weakly confluent. Let C be a continuum in Y. Since, for
each aeAd, C, = P,(C) is a continuum in Y, and P,of is weakly confluent,
there exists a continuum K, < X such that [P,of](K,) = C, for each
aeA. There exists a cofinal subset B of A such that {K;},p converges
to a limit continuum in X (see [56], p. 45).

Since B is cofinal in A, there is a homeomorphism & from Y onto
Y' =1im{Y,, P,?, B} such that Pzoh(y) = Ps(y) for each yeY and fe B.
hof is a map from X to Y’ such that Pzohof from X onto Y, is weakly
confluent for each Be B, and Psof(C) = P4(C) for each fe B. If we can
show that hof(K) = h(C), then f(K) = C. Hence we may assume without
loss of generality that K is the limit of {K,}, 4.

Let ye C. For each aed let 2,¢ K, be such that P,of(x,) = P,(y).
There is an ¢ K such that x is a cluster point of the net {z,},. . Suppose,
for the sake of a contradiction, that f(z) ## y. There is then an aeA such
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that P,of(x) # P,(y). Hence, there exist disjoint open sets U and V
in ¥, such that P,of(x)e U and P,(y)eV. Thus f~'[P;'(U)] is an open
subset of X containing x. Hence, there is a 8 > a such that zz¢ f~'[P;(U)].
Therefore, we have

P.(y)eV and P.(y) = PioPsof(ws) = P,[f(ws)]e U,

which is a contradiction. Hence, f(x) = y, and so C < f(K).
Let ze K. There is a net {z,},., which converges to # and such that
each z,¢ K,. Thus, P,of(xz,)e C, for aecA. Let

2q¢ P [P of(x,)1NC.

Since C is compact, there is a ze¢ C such that z is a cluster point of
the net {2,},e4-

Suppose that f(x) # 2. There is, therefore, an a,ed such that P, (z)
# Py of(z). Let U and V be disjoint neighborhoods of P, of(#) and
P, (2), respectively. Since {®.}.eq converges to x, there is a g, such that
if 8 > B,, then zze f~1o P (U). Since {2,}q.4 clusters to 2, there is a y > f,,
y > ao, such that z,e P;'(V). Therefore,

w,ef1oP7(U), P.z,)eV and P,of(x,)eU.-
But,
Pa(zv) = P;OPv(zr) = P:OPr(f(wv)) = Pa(f(wv))

which contradicts the assumption that U and V have no point in common.
Hence, f(z) = 2.

Hence, f(K) = C, so f is weakly confluent.

THEOREM 4. If X is an inverse limit of connected graphs with monotone
retractions as bonding maps, then there are a dendrite D and a weakly con-
fluent mapping f from D onto X.

Proof. Suppose that X = lim(@,, P,), where, for each integer n

@, is a connected graph, and P, is a monotone retraction from @, , onto G,,.
It follows from Theorems 1 and 2 that for each integer n there is a finite
tree D,, there is a monotone retraction ¢, from D, , onto D, , and there
is a weakly confluent finite-to-one map f, from D, onto @, such that
P,ofni1 =fa0q,- Let D =1lim(D,, q,). Then D is non-empty (see [3],

p. 429), and it follows from [3], p. 430, that there is a mapping f from D
onto X and, if p™ and ¢" are the projections of X and D onto G, and D,,
respectively, then we have p"of = f,oq" The projection ¢" is monotone
(see [1], p. 240) and is, therefore, weakly confluent (see [2], p. 214). Hence
f.0q" = p"of is weakly confluent, since the class of weakly confluent
mappings is multiplicative (see [6], p. 6). Therefore, by Theorem 5, f is
weakly confluent. |
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We have only to show that D is a dendrite. It follows from [4], p. 72,
that D is 1-dimensional and, by [1], p. 236, D is a continuum. Also, by [1],
p.- 241, D is locally connected and from [12], p. 249, we know that D
contains no simple closed curve. Therefore, D is a dendrite.

LEMMA. Let R be a strongly regular curve and let {T}%2, be a sequence
of fimite subsets of R such that if ¢ is a positive integer, then R\T; has only
Sfinitely many components each of which has diameter less than 1[i. There
18 a sequence {I';}32, of finite subsets of R such that if © is a positive integer,
then R\T; has only finitely many components each of which has diameter
less than 1[i, T; = T;,,, and such that if P is a point of T;, then P is a limit
point of at least two components of R\T,.

Proof. Let R and {T;}, be given as in the hypothesis. For a positive
integer ¢, let
n
T = U Tj.
j<i

Clearly, each component of R\T; has diameter less than 1/i; R\T;
= R\T; has only finitely many components. Suppose that R\T; has
only finitely many components for 1 < j < 4. Let 8§ denote a component
of R\T;_,. Let @ = {g;}\., be the set of points of T, , which are in &S.
Let P = {P,;}j., be the set of points in SNT;. Let D = S\P.

‘We wish to show that Du@ has only finitely many components.
Let U be a component of DuU@, and suppose that U is not a component
of R\P. Since DU@Q is locally connected, U is open in DUQ and U Z W,
where W is a component of R\P. W\ U and U are not mutually separated.
Hence, there is a point z in UNW\U or in Un(W\U). If ze U, then
either ze @ or ze D, but since UND is open, ze Q. If 2 U\ U, then z2¢Q,
since U\ U c PuUQ. Therefore, each component of DUQ is a component
of R\P or contains a point of ¢, so there are only finitely many such
components.

We wish to show that D has only finitely many components. Suppose
that D has infinitely many components. DUQ is connected. D is open
and each component of D is open. Hence, some point p,e P is a limit
point of infinitely many components of D, say {K,}% ;. Since DUQ has
only finitely many components, there are a point g, @ and an infinite
subsequence {Kap} of {K,}3, such that ¢, is a limit point of K:w’ g=12,...
For $ =1,2,..., p, and ¢, are limit points of the connected set Kup.
Hence, each open set containing p, whose closure does not contain ¢,
must have a point of Kuﬂ, g =1,2,..., on its boundary, contradicting"
the fact that R is regular. Therefore, D = 8\ P has only finitely many
components, whence R\T; has only finitely many components.

We define the required {7}, as follows. Let B; be the set of all
points X of T for which X is a limit point of only one comporent of
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R\T;. Let T; = T{\B;. The components of R\T; are the components
of R\T,, so each component of R\T; has diameter less than 1/ and
there are only finitely many such components, and each point of 7' is
a limit point of at least two components of R\T;. If peT;, then p is
2 limit point of two components of R\T,, so p is a limit point of R\T}.
Hence peT,, ,. Therefore, T, < T;,,.

THEOREM 5. Every strongly regqular curve R is a monotone image of
a curve belonging to class (IV).

Proof. Let R be a strongly regular curve, and suppose, according
to the Lemma, that {T,}{2, is a sequence of finite subsets of R with
T,cT, c... such that R\T,; has only finitely many components each
of which has diameter less than 1/¢ and such that each point of 7, is a
limit point of more than one component of R\T;. Label the comporents
of R\T;, {B,}fi,, and the points of T;, {P;}/%,. Let

A = {(By, By, Py): j <k and Py is a limit point of B; and B;,}.

For each aj,e4d, let aj,; be a copy of [0, 1]. Let @G; be the connected
graph with ares {a};: a;,¢A}, where the left-hand endpoints of aj; and
aj are identified, and the right-hand endpoints of aj,; and aj, are
identified, and the left-hand endpoint of aj; is identified with the right-
-hand endpoint of a}p .

Define f;,,: G;,, — G; as follows: if ze affy', where P, e B,,, then
Jis1(2) is to be the left-hand endpoint of a,,;., or the righi-hand end-
point of aypp. If @ =reafly', where P,,;, = P, and B,,,; < B,, cnd
B;,, < B,;,, then define

re by for m < n,

fir (@) =

1—rea, for m>n.

Let L =1lim{G,, f;}. Then L is a curve belonging to class (IV).

We distinguish two types of points of L: ¢ L is of type I if, for some 1,
fi(z) is in the interior of some arc daffi, of Gy, and Pj(z) = Pi*(a),
and e L is of type II if it is not of type I. In the latter case f;(z) is an
endpoint of an arc of G, for each ¢« and we denote by B the component
of R\T; corresponding to that endpoint.

Define f: L — R as follows:

P if # is of type I and f;(x) = a’y,

fl@) ={ — . .
NB; if x is of type II.

We must show that f is monotone, continuous, and surjective.
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We show first that f is surjective. Since, if re U T}, r is an image
i=1

of a point xe L of type I, we must show only that if re B\ U T;, then

fm=]

there is a point e L such that f(z) = r. Let

Te R\ U T’f'

iel

For each ¢, let B} denote the component of R\ T, containing r. Then
r = ﬂ E

Note that, for each i, B; = By, has some point P, of T; as a limit
- point and P;' is also a limit point of some other component By, of R\T‘
Hence, ‘,‘n‘, ity OT aj‘,,,‘,‘ is an arc of G;. Denote by y; the endpomt of amu Sl
or of aj‘.,,,i,‘ that corresponds to Bj. Then, f;,,(¥;41) = ¥;, since B, < B.
Therefore, there is a point ye L such that f;(y) = y; and f(y) = 7.

We wish to show that f is monotone. Let

re R\ U T;
=1
and consider distinet points # and y of f~!(r). Then z and y are of type II,
fi (@) # fi(y) for some i, and B? = BY. But re BfnBY. Therefore, f~(r)
is one point. Let reT;. For each j > ¢ let G; denote the connected sub-
graph of G; consisting of those arcs of G; which correspond to reT;. Let
L, = lim{G'- f,-,G'}; the set of positive integers z> 14 may be considered

as a subset of L. We wish to show that L, = f~'(r). Note that f(L,)= r.
Suppose #e L\L,. Then, for some j > i, f;(#)¢ G;. Thus, x is of type I,
and f;(x) is in the interior of some arc of G; corresponding to seT;,s #r,
80 f(z) = s or is of type II, and f(x) is the endpoint of some arc of G,
that corresponds to some component B or R\T,; that does not have r
as a limit point, and f(x)e B. Thus, f(x) # 7.

We have only to show that f is continuous. Note that B, the collec-
tion of all connected open sets of B each of whose boundary is a subseb
of some T';, is a basis for R. Suppose that Ue B, and that

-ﬁ\U-_—{tutz""’tn}CTi () =L‘i

is closed, so f*(U\U) is closed. Let xe f~1(U). Suppose that 2 is of type I.
For each sufficiently ]arge %, let aj‘,c q; be the arc of @; such that f, x) i

— oit
in the 1ntefi?§ of ajk,‘ Since f,_H(the interior of a,ik‘,') Jt+1"1+1’il—l
and f;,,|q; e ki s 1l 1 is a homeomorphism onto a,j kg; Which is

open in G;, we may conclude that {ze L: f;(?)e a}ik‘,i for sufficiently
large i} is an open set of L containing # and lying in f~'(U). Suppose
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that @ is of type II. Let ¢ be the distance from f(x) to the boundary of U.
Let N be a natural number such that 1/N < ¢/4. Let ¥V be the union
of the components BY, BY, ..., BY of R\T, that have f(x) as a limit
point. Then ¥V < U. Let F, be the subset of G, consisting of the vertices
corresponding to the components BY together with the interiors of the arcs
that have one of these vertices as an endpoint. F, is open, so (fx) " (Fy)
is open and contains z. We wish to show that (fy)"'(Fy) < f~1(0).
Let ze (fy)~ (Fy). If fx(2) belongs to the interior of one of the arcs of Fy,
then f(2) is f(z) or f(2)e V\V, and ze f~Y(U). If fy(2) is a vertex of Fy
corresponding to, say, By, then, if 2 is of type I so that f;(2) is in the
interior of some arc of G;, j > N, then the point corresponding to that
arc is in BY « V < U; if 2 is of type II so that f;(2) is some vertex of Gy

corresponding to the component Bj of R\T,, then f(z) = () Bj, but we
have B% = BY, so that f(2)e By = V = U. Therefore, (fy)™ (Fy) = f(U)
and f~!(U) is open.
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