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Introduction. There exists a number of mathematical papers deal-
ing with sets of asymmetry and with sets of approximative asymmetry
of functions. In the definition of asymmetry an essential part is being
attached to the structure of the set of points satisfying the inequality
If(®) —a| < e in the vicinity of the point at which the asymmetry is to
take place. It is worth while to be noted that the structure of such a set
is also an indicator of continuity or of approximative continuity of a func-
tion. An attempt to give a uniform description of these, in a way, akin
notions seem therefore to be purposeful. The result of my investigations
in this direction is the notion of ¢-regularity introduced in §1 of this
paper. Namely, it turns out that one may define the points at which
a function is, in a sense, non-regular (e.g. it is uncontinuous, or has an
asymmetry in the sense of Young) as points correspondingly non-regular
with respect to some sets. This enables us to draw conclusions as to the
magnitude of the set (in the sense of power, measure, category ete.) of
points at which the behaviour of a function differs from the one which
in the given case has been accepted as regular. Since I have mainly been
concerned with asymmetry and its direct generalizations, the examples
of non-regularity given in the paper refer to asymmetry. Continuity is
considered only to show that the ¢-regularity in question is a generaliza-
tion of continuity.

1. p-regularity of sets and functions.

Definition 1. Let X be a space and MM a os-additive structure of
subsets of this space. Moreover, let ¢ be an operation assigning a set
p(A) ¢ X to every set 4eIM. (The complement of the set ¢(A) to the
space X shall be denoted by ¢*(4)). The points of the set ¢(A4) will be
called g-reqular with respect to the set A, or g-regularity points of the
sett A. Correspondingly points of the set tp (A) will be called the ¢-non-
-reqularity points of the set A.
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Definition 2. Let now Y be a topological separable space satis-
fying Hausdorf axiom and let f be a function defined in X whose values
belong to the space Y. Further, let f be OM-measurable, i.e. such that
FHE)eM for any open set G contained in the space Y. The function f
13 said to be g-regular at the point zeX (or x is its p-reqularity point) if
for every point y ¢ ¥ and every neighbourhood U of it there exists a neigh-
bourhood U’ of this point such that U’ < U and zep(f1(T")).

The set of g-regularity points of a function f shall be denoted by
@(f). The points of the set ¢*(f) = X —¢(f) shall be called @-non-regularity
points of the function f.

A fundamental theorem concerning the notions just introduced is
the following

THEOREM 1. Let a o-additive structure M and a o-additive ideal O
of subsets of a space X be given. Let Y be a topological separable space
containing at least two points.

Then in order that for any IN-measurable function f mapping X into Y
we have ¢*(f) e N it suffices, and if M is a o-field it is also necessary, that
for every A eM we have ¢*(A)eN.

Proof. First, let ¢*(f) N for every IM-measurable function f. Let
AeM. If @ + A +~ X, then by f we denote a two-valued function with
values in Y such that f(x,) +# f(x,) when z,e4 and x,¢ A. 1f, on the other
hand, 4 = X or 4 is an empty set, we take for f an arbitrary constant
function with the value in Y. In both cases we obtain an 9-measurable
function. This follows, on the one hand, from the measurability of the
set X —A (M is a field) and, on the other hand, from the fact that the
points ¥, = f(x,) and vy, = f(x,) (ryed, 2,e X —A) have disjoint neigh-
borhoods. We will show that

(1) ¢*(4) = ¢*(f).

For, let first A = X and y be the unique value of the function ¥
Then for every neighbourhood U’ of the point y we havef ' (U’') = X = A.
Thus ¢(f*(U’)) = ¢(A4). Hence if now @ eg(f), then wep(A), which proves
inclusion (1) in this case.

Now let 4 be an empty set. Consider a point yeY which is not
a value of the function f, and its neighbourhood U which does not con-
tain any value of the function f. Thus the set fH(U) is empty. Suppose
that zeg(f). Then there exists a neighbourhood U/ = U of the point y
such that zep(f '(U’)). Since the set f~'(U’) is empty, and thus identi-
cal with A4, we have cp(ffl(U’)) = ¢(4). Thus we have proved that
#(f) = ¢(4), and consequently inclusion (1) holds also in this case.

Finally, let X = 4 £ @. Let y, and y, be the values taken by the
function f in the set 4 and X —A respectively. If U, is a neighbourhood
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of the point y, which does not contain the point #,, then we have
f~Y(U,) = A, and thus inclusion (1) may be proved similarly as in the
preceding case.

So we have proved inclusion (1). Hence the necessity of the condi-
tion asserted in Theorem 1 follows immediately.

Now we will prove the sufficiency of this condition. Suppose
that ¢*(A)eN for every set A belonging to the structure M. Let, further,
req*(f), where f stands for an 9-measurable function. This means that
there exists a point yeY and its neighbourhood U such that for every
neighbourhood U’ < U of the point y we have .lfe([*(f_l(U')). In partic-
ular, we can take for U a neighbourhood V, < U of the point y belong-
ing to the basis of the space X.

Thus

(2) 7" (f) = nkzjl 7 (F (V)

where {V,} denotes the sequence of all sets making up the basis of the
space X. Since each of the sets ¢*(f'(V,)) belongs to the ideal N, the
set ™ (f) is also an element of this ideal. Thus Theorem 1 has been proved.

Remark 1. The proof of the necessity of the condition given in
Theorem 1 indicates that in this part of the theorem there is no need
of assuming the separability of the space Y. Similarly, the sufficiency
of this condition is ensured also when the space Y consists of only one
point.

Remark 2. In the case when the space Y is finite, we may assume
in Theorem 1 that 9N is a finitely additive ideal.

2. Examples of ¢-regularity. 7-symmetry. In this paragraph, as
well as in the next, we will give a number of examples of ¢-regularity.
These have been chosen to show the extension of the research field covered
by this notion. This implies, unfortunately, the necessity of proving
some known or even classical theorems as corollaries to Theorem 1. Only
in Section 4 new results will be given.

I. Let X and Y be topological spaces, the space Y being separable.
Put

(3) p(4d) = (X—A) w Int(4) for A c X.

It is not very difficult to see that the g-regularity of the funection
mapping X into Y, given by formula (3), is equivalent to its contin-
uity. Let now 9N denote the family of open sets in the space X. The sets

(4) | ¢*(A) = A ~ Fr(4)

are empty for A eM. Take now for N a family consisting of an empty set.
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The following is an immediate consequence of Theorem 1. If for
every open set B in the space Y, the set f~'(B) is open in the space X,
then the function f is continuous at every point of the space X.

Now, if M is the family of F,-sets, then sets (4) are of the first cate-
gory for A eOM. Thus taking for N a family of the sets of the first cate-
gory in X we obtain, as previously, a known theorem on the category
of a set of discontinuity points of the function of the first class of Baire.

II. Let Y be the space of real numbers with the natural topology.
Let X be a space whose elements are points of a euclidean n-dimensio-
nal space. In the space X we shall introduce a topology according to the
following rule: A set U < X is a neighbourhood of a point p belonging
to U if the lower internal density of the set U at the point p is equal to
unity. Let, in its turn, ¢ denote a function defined by formula (3) in the
family of subsets of the space X. It can be easily verified that the g¢-
-regularity of a function at a certain point means here the approxima-
tive continuity in the sense given by Denjoy. Take for M a family of
sets measurable according to Lebesgue. Then, for A<M, ¢*(4) is a set
of measure zero. Thus denoting by 9 the family of sets of measure zero
we obtain the known theorem on the approximative continuity almost
everywhere of a measurable function.

IIT. Let X be a euclidean space. Let in this space, besides the
natural topology, a topology 7' be distiguished. In the sequel we will
denote by Ar, Ay, ete. the closure of the set A, the set of its accumu-
lations points ete. with respect to topology 7. When the topology T
coincides with the natural topology we will omit this additional notation.

Definition 3. A point xeX will be called a T-asymmetry point
of the set 4 < X if there exists an (n—1)-dimensional hyperplane H
passing through « such that

(5) ve(d A XH)pA(4 A X))y,

where X and X~ denote components of the set X —H, while AARB
denotes the symmetrical difference of the sets A4 and B. (In the sequel
we will use the expression “There exists a decomposition X+ o H o X~
corresponding to the point #” instead of saying “there exists a hyper-
plane H...”.)

The points of the space X which are not 7-asymmetry points of
the set A shall be called its 7T-symmetry points.

By ¢z we shall denote an operation assigning to every set 4 < X
the set of its 7T-symmetry points. The ¢p-regularity of a function shall
also be called its 7-symmetry. In a similar way we introduce the notion
of the asymmetry of functions.

Theorem 1, when applied to the notion of 7-symmetry, takes the
form of the following
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THEOREM 2. Let a o-additive ideal N of subsets of a space X be given.
A necessary and sufficient condition in order that the set of T-asymmetry
points of an arbitrary function mapping X into a separable space X (con-
tatning at least two elements) belongs to N is that for every set A = X the
set of its T-asymmelry points belongs to N.

Since the notions of asymmetry and approximative asymmetry
have been introduced with the aid of limit values, upper and lower ap-
proximative limits and the like, it seems purposeful to introduce analogous
notion in this case.

Definition 4. Let a function f map a set A = X into the space Y.
A point yeY shall be called the T-limit value of the function f at point
zeX 1if for any neighbourhood U of the point y

(6) welf (U}

We denote by Wyp(x, f, A) the set of T-limit values of the function
fl4 at the point x. If 7' is a natural topology we will write W («x, f, A)
instead of Wy(x,f, A).

The following theorem explains the relationship between the 7T-asym-
metry and the structure of sets of 7'-limit values.

THEOREM 3. A point weX is a T-asymmetry point of a function f
if and only if for every decomposition X~ v H o X of the space X corre-
sponding to the point x we have

(7) Wolx,f, X¥) = Welx, f, X7).

We omit the easy proof of this theorem.

In particular, if X is a space consisting of real numbers (n = 1)
we adopt the following notation: W7 (z, f) = Wr (2, f, (#, + o)), Wz (@, f)
= Wy(z,f, (— oo, 2)). The points of the sets Wi (z,f) and Wy (z,f)
will be called the right-hand side and left-hand side T-limit values
of the function f at the point z, respectively. Thus a point z is a T-sym-
metry point of a function of one real variable if the set of its left-hand
side 7T'-limit values is identical with the set of its right-hand side 7-limit
values at the point z. (If we consider the natural topology in X, then
we have to deal with the limit values in the usual sense.) In the next
two paragraphs we shall be dealing with examples of T-asymmetry with
various topologies. Paragraph 3 will be devoted to examples concerning
functions of one variable, the power of the set of 7T-asymmetry points
being our main subjeect of interest. In paragraph 4 a theorem on measure
and category of the set of approximative asymmetry points of function
of many variables will be given.

3. Examples of T-asymmetry on the straight line. Throughout this
paragraph we denote by Y the set of real numbers with the usual
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topology. It is true that all results obtained in this paragraph may be
carried over to the case when Y stands for a separable space containing
at least two points. But because the aim of this paper is to deduce some
theorems concerning real functions from Theorem 2, all the results of
this paragraph shall be stated for the case mentioned above. Similarly,
we denote by X the set of real numbers throughout this paragraph. In
particular cases we apply to X various topologies obtaining thus various
T-symmetries.

I. Let T denote the natural topology of the space X. It is easily
verified that with this topology a point zeX is a T-asymmetry point
of a set A < X if and only if it is an accumulation point exactly of one
of the sets A ~ (v, + oo) and A ~ (— oo, ). In such a case we shall
say that x is a point of exactly one-side accumulation of the set A. The
set ¢p(A4) is for every A = X at most countable. To prove this it suffices
to assign to every point xe¢y(A) the adjoining interval which is a com-
ponent of the complement of the set A. Thus we obtain a mapping of
the set ¢7(A) into a family of pairwise disjoint intervals, each of which
corresponds to one or two points of the set ¢7(A). Choosing now in Theo-
rem 2 for N a family of at most countable sets, we obtain a known theo-
rem of Young [7] on the set of asymmetry points of a real function of
one real variable.

II. Now we will show a comparatively large class of topologies in
the space X which also allow to obtain a countable set of 7- asymme‘m}
points. Namely, the following theorem is true:

THEOREM 3. Let the topology T be stronger than the usual topology
m X and let it moreover satisfy the condition
(W) If 2pe(B)g for m =1,2,... and x,—x —> 0 for n — oo, then

Then the set of T-asymmetry points of an arbitrary set A = X and,
consequently by Theorem 2, of an arbitrary real function of one real variable,
18 at most countable.

Proof. Let A < X and 2zepj(A). This means that x is a T-accu-
mulation point of exactly one of the sets 4 ~ (x, + co)and A ~ (— oo, ).
We may assume that e.g. xe{d ~ (¥, + o0)lp and z¢{Ad ~ (— oo, x)}y.
In view of condition (W), there exists a number § > 0 such that the
interval (2 —d, #) does not contain any 7-accumulation point of the set
A. Thus this interval does not contain any 7T-asymmetry point of the
set A, for the latter are its 7-accumulation points. So we can establish,
analogously as in the previous section, a mapping between the points
of the set ¢r(A4) and a family of pairwise disjoint intervals. Thus we
have proved that the set ¢r(A) is countable.

Remark. Under the assumption that the topology 7 is stronger
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than the natural topology, condition (W) is equivalent to the following
condition:

(W) For an arbitrary point xe X and its T-neighbourhood U there exists
a number & > 0 such that the set {(z—3d,2+0)— U}y is empty.

For let first the topology T satisfy condition (W’') and a,—z —> 0
for n — co and x,e(H,)r for n = 1,2, ... Suppose that x¢(| ) E,)r. This
means that there exists a 7-neighbourhood U of the point x such that
the set U ~ ({UJ BE,) does not contain any point different from z. By
(W’) there exists a number 6 > 0 such that the set (x—d,2+0)—U
possesses no T-accumulation point. The convergence x,—x >0, in its
turn, implies the existence of a positive integer N such that z—6 < zy
< @-+0. Because the topology 7' is stronger than the natural topology,
the interval (x—d, #+06) is a T-neighbourhood of the point zy. Thus zy
is a T-accumulation point of the set (r—d,x+40) ~ Ey, and, because
of the choice of the number J, it is a 7-accumulation point of the set
Ex ~ U. But this is impossible, for the set Fy o U contains at most
the point . The contradiction obtained proves that ze(|J E,)r, and
thus condition (W’) implies condition (W).

Now let condition (W) be satisfied. Suppose there exists a point »
and its neighbourhood U such that each of the sets (z—d,z+0)—U
possesses a T-accumulation point. In particular, each of the sets (x—1/n,
x+1[n)—U possesses a T-accumulation point z,. Since the topology T
ig stronger than the natural topology, x, is also an accumulation point
of the set (x—1/n, x+41/n)— U in the ordinary sense and thus the distance
of the points x, and « does not exceed 1/n. Thus , —z — 0. So, by condi-
tion (W), # is a T-accumulation point of the union of the sets (x—1/n,
x+1/n)— U, and thus it is a T-accumulation point of each of them. This
implies that # is a T-accumulation point of the complement of the set U
which contradicts the fact that U is its 7-neighbourhood. Thus condi-
tion (W) implies condition (W') and their equivalence is proved.

Remark. In order that a topology stronger than the natural topo-
logy ensures the countability of the set of T-asymmetry points condi-
tion (W)is not necessary. To prove this let us consider the following example.

Let a topology 7' in which open sets are open intervals and a perfect
nowhere dense set ¢ (and all those sets which can be obtained from the
latter by finite multiplications and arbitrary summations) be given. It
follows from the definition of the topology 7' that it is stronger than the
natural. But condition (W) is not satisfied. Indeed, let {F,}denote a se-
quence of components of the set X —C such that the sequence of their
centres {z,} converges to a point x,eC. Obviously we have x,<(H,)p but x,
is not a T-accumulation point of the set () FE,. For the set C, as a T-neigh-
bourhood of the point x,, does not contain any point of the set (J %,.
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On the other hand, sets of the form ¢7(A) are countable. In fact,
consider an arbitrary set A < X. Divide the points of the set ¢r(A4)
into three classes. Let those points of the set ¢p(4) which are the ends
of the intervals adjoining to the set ¢ belong to A,. Let the set A, con-
sist of all those T-asymmetry points of the set 4 which do not belong
to €. The remaining part of the set ¢7(4) is denoted by A;. The counta-
bility of the set A, is obvious. The set A4, consists of points of ordinary
asymmetry of the set 4 and thus is countable. The points of the set A,
are one-side accumulation points (in the ordinary sense) of the set ¢ ~ A.
Thus the set A, is countable and consequently so is the set gz (A).

I1I. Let 7T, and T, be topologies of the set X defined as follows:

(a) U is said to be a T,-neighbourhood of a point x if xe U and, more-
over, if # is a density point of a measurable set U < U.

(b) U is said to be a Ty-neighbourhood of a point x if it contains x
and, moreover, if there exists a number 6 > 0 such that (z—0,2+49)—U
is a set of the first category.

Let T =T, ~T,. We will show that in the topologies T and T, not
all sets of the form qp(A) are countable.

Let A, be a set of the first category such that the measure of its
complement is zero. Let A, consist of all the intervals of the form
(¢—9~ ", ¢) such that the interval (¢—37", ¢) is a component of the com-
plement of a perfect Cantor set. Put 4 = 4; ~ 4,. We will show that
the sets ¢p(A4) and cp}l(fl) are uncountable. Consider namely the point
2"k

(8) r=2 Y372,

e

k

I
—

where {n;} stands for an arbitrary increasing sequence of positive inte-
gers. Put further
i
ny Ny
(9) 7= —97% 12 ¥ 3"

k=1

It is seen that x; < « and lim x; = @. Moreover,

j—oo
‘27Lj
(10) 4 ~ (2m)]| = = B
X —; 9‘2 J+2 Eﬁ 13
k=j+1

Thus the left-hand side upper density of the set A, as well as that
of the set 4, is positive. Hence x is a left-hand side 7- and 7',-accumula-
tion point of the sets A4 and 4,. On the other hand, the right-hand side
density of each of those two sets at the point x is equal to zero. For if
the interval (x,x-J) and the set 4, have a common segment (a,b)
with the length d (this interval and the set A have a common part cover-
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ing a segment of the same length up to a set of measure zero), then there
exists in the same interval a segment adjoining the interval (a, b) from
the left with the length 3"d disjoint with the set A4, (and consequently
also with A). Here n increases indefinitely as o decreases to 0. Thus »
is a right-hand side 7';-accumulation point of neither of the sets A, and
A. Hence z is a T,-asymmetry point of the sets 4 and 4,. Since the set
A is of the first category, it does not possess any 7';-accumulation points.
Thus « is neither a right-hand side 7-accumulation point of the set A.
So we have proved that the points of the form (8) are the T-asymmetry
points of the set A and the T',-asymmetry points of the sets 4, and A.
Since there are as many points of the form (8) as there are increasing
sequences of positive integers, the sets ¢7(4), ¢r (4) and ¢z, (4,) are
not countable. Since the T,-asymmetry of a function is equivalent to
the approximative asymmetry, the characteristic functions of the sets
A and A, have uncountably many approximative asymmetry points.

Remark. The first example of a function having uncountably
many approximative asymmetry points has been constructed by Below-
ska [1]. Her example is more complicated. The idea of introducing the
characteristic function of a set related to Cantor set is due to Lipinski [5],
who has also shown an example almost identical with the characteristic
function of the set A.

IV. In Section IIT we considered simultanously several examples
of T-asymmetry. An essential part in those considerations was played
by the topology 7'; which is closely connected with the approximative
asymmetry. The introducing of the topology T, is justified by the fact
that with its aid we may develop some general considerations. Namely
we will show that the countability and uncountability are not inherited
(i.e. they are not hereditary properties with respect to the inclusion of
topologies).

Namely let 7, be the natural topology on the straight line and let 7
and 7', have the same meaning as in Section 3. It is seen that 7, < T < T',.
All sets of the form ¢7,(4) and ¢1,(4), where A < X are countable (7|
is the ordinary topology considered in Section I and 7', satisfies condi-
tion (W)), which is not true for all sets of the form ¢ (A).

4. Examples of 7T-symmetry in the n-dimensional space. Through-
out this paragraph X stands for an n-dimensional euclidean space.
Formulating the theorems on functions we shall confine ourselves to
real functions, similarly as it was the case in the foregoing section.

1. Let T denote the natural topology of the space X. In this topology
x is a T-asymmetry point of the set 4 = X if there exists a decomposi-
tion X* v H o X~ of the space X corresponding to the point # such that

(11) we(Ad A XY AAA~XY.
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Similarly, # is a T-asymmetry point of a function f if there exists
a decomposition X* o H v X~ of the space X corresponding to the
point # and such that

(12) Wi, f, X7) # W(a, f, X7),

where W (x,f, F) have the same meaning as in § 2. The 7T-asymmetry
considered in this section shall be called briefly asymmetry.

It is easy to notice that if X is a plane and A its semiplane, then
the asymmetry points of the set A fill the whole straight line. Thus the
set of asymmetry points of a plane set must not be countable. So Young
theorem on countability of the set of asymmetry points of a real func-
tion of one real variable cannot be carried over to functions of many
variables. One may, however, prove the following

THEOREM 4. The set of asymmetry points of a real function of n real
variables is of the first category.

Proof. Obviously, it suffices to prove that the sets ¢7(A) are of
the first category. We will even show that they are nowhere dense. Na-
mely let 4 = X and K be an arbitrary sphere in the space X. We will
show that there exists a sphere K, < K disjoint with the set ¢p(4).
First, if K does not contain any asymmetry points of the set A it suffices
to put K, = K. So let ze K ~ ¢p(A). Consequently there exists a decom-
position X* o H o X~ corresponding to the point # and such that con-
dition (11) is satisfied. Without loss of generality we may assume that
2¢(A ~ XT). Thus there exists a sphere K, with its center in x such
that the set Ky ~ X ~ A is empty. Now let K, be a sphere contained
in Ko~ X", The set K;~n A c Ky~ A~ X" is empty which implies
that the sphere K, does not contain any accumulation point of the set A
and consequently any of its asymmetry points. Thus.theorem 4 is true.

II. Now let X, ¥ and 7 have the same meaning as in Section II
of §2. The 7-symmetry corresponding to such topology will be called
the approximative symmetry. Thus a is an approximative asymmetry
point of a set A < X, if there exists a decomposition of the space X
corresponding to the point x# and such that one of the sets 4 ~ X or
A ~ X~ has at the point z the external density equal to zero while the
other has a positive external upper density.

The 7-limit values of a function corresponding to the topology con-
sidered in this chapter will be called the approwimative limit values of
such a function. Accordingly, a point <Y is an approximative limit
value of the function f at the point zeX if for every neighbourhood U
of the point y the set f~'(U) has at the point x a positive upper external
density. Thus the approximative asymmetry of a function f at a point
xeX denotes the existence of a decomposition X+ o H v X~ of the
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space X corresponding to the point # such that the sets of approximative
limit values of the reduced functions f|X™ and f|X~ are not identical.

In the case when X is the set of real numbers the notions of approx-
imative limit values and of approximative asymmetry introduced here
are in full agreement with the analogous notions introduced by Kul-
backa [4]. ‘

In the sequel, we will prove two theorems on the sets of approxi-
mative asymmetry points which generalize the corresponding results
obtained by Kulbacka [4] for functions of one variable to functions of
many variables.

THEOREM 5. The approximative asymmetry points of a function of
an arbitrary finite number of variables form a sel of the first category.

THEOREM 6. The measure of a set of the approximative asymmelry
points of a real function of a finite number of real variables is equal to zero.

=

Before proving Theorems 5 and 6 we will introduce some notations
useful in. the proofs of this theorems.

Let X be a plane, zeX, ¢ > 0 and let H be a straight line lying in
X. By P(x, ¢, H) we denote a square situated in X with its center in x
and with the sides 2& such that the straight line H divides it in two rec-
tangles.

By Azs, where A < X, >0 and 6> 0, we denote the set of
points # for which there exist decompositions X o H v X~ such that

]A ~ P(ﬂb‘, &, H) r\X_|
P, ¢, H) ~ X |
2|4 A Plx,e, H) ~n X |

P, e, 1) /

(13)

(|E| denotes the external measure of the set F < X).

We will show that the set A,; is closed. In fact, let x,ed;; for
n=1,2,... and «, > for n — oco. Let further X;7  H, < X, denote
the decompositions of the space X corresponding to the points x, and
satisfying condition (13) defining the set A;,. There exist a sequence
{ny} of positive integers and a straight line H such that the angle between
the straight lines H and an tends to zero as k indefinitely increases.
Without reducing the generality of our considerations we may assume
that {n;} is the sequence of all positive integers ordered according to
their magnitude. Now let p,eX, and ¢, ¢ X, be points which lie on
one straight line perpendicular to H, and whose distance from the point
x, is 1. As it can be easily proved the sequence {p,} contains a convergent
subsequence. To avoid complicated notations let us assume that the
sequence {p,} converges to a point p,. Denote by X* that one of the com-
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ponents of the set X —H to which belongs the point p,, and the other
by X . Not very complicated considerations show us that the decompo-
sition X+ v H w X~ thus formed and the point « satisfy condition (13).
This means that weAd;; and consequently that the set A, is closed.

We may now proceed to the proof of Theorems 5 and 6. To avoid
cumbersome details in calculations, we shall prove both theorems for
functions of two variables. In view of Theorem 2 it suffices to prove
that for an arbitrary set A = X the set ¢7(A) is of the first category or
of measure zerc, respectively.

Proof of Theorem 5. Let zegpp(A). There exist numbers g > 0
and 0 > 0 such that weAsz, and the upper external density of the set A
at the point z is not smaller than 108.

Consider an arbitrary circle K < X with the center in # and sup-
pose that K < A;;. There exists a number ¢ > 0 such that 2¢ < 4,
P(x,e, H) =« K and

A~ Pz, e, H) ~ X+

) Pz, ¢, H) ~ X7

where X* o H v X~ is a decomposition corresponding to the point z
and satisfying condition (13). Denote by @, the rectangle P(x, e, H) ~ X ™.
Since it is included in 4,4, there is a straight line H’ passing through
its center x’ such that

1A AP, 2¢, H') A X'|

15
15) |P(«'y 2¢, H') ~ X'| <F

where X’ stands for one of the semiplanes into which the straight line
H’ divides the plane X. Thus the straight line H’ divides the rectangle
G, into two congruent trapezes or triangles whose interiors are X' ~ @,
and X" ~ @G, (X = X—(X'u H')) in such a way that

(16) Gy ~ X' ~ A] <8B8|G, ~ X'|.

Put ¢, = X" ~ G,.
Assume that the open sets Gy, G4, ..., @ such that

(17) Gi_,> G for 1<j<k,
(18) 1G;] = 271G,
and
AA(G
(19) 4 ~ (Go—Gy) <88 for 1<j<k
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have been defined. The set ¢, may be represented as a union of rectangles
with disjoint interiors. Applying to each of them an argument analogous
to that carried out for the rectangle @,, we can divide G; into two subsets
with equal measures in such a way that one of them, say Gy,,, be open,
and on the other — the average external density of the set A — does
not exceed f. Thus the existence of a sequence {(;} of subsets of the
set (¢, such that relations (17), (18) and (19) are satisfied for any posi-
tive integer j has been proved. Hence

[AAP@, e, H) ~n XT| = |4 A (Gy— (~ G;)); < 8B|P(x, e, H) ~ X*|,

which contradicts (14). Thus the supposition that K < 4, is not true.
Consequently the set Az; does not include any sphere with the center
in # which means that x is a boundary point of the set A;,. Hence

(20) ‘F;'(A) < /L9J6 Fr(Aﬁ,d)y

where $ and ¢ take any rational positive value. In view of the fact that
the sets Az, are closed, the sets Fr(4,,) are nowhere dense and there-
fore the set ¢ (A) is of the first category. Theorem 5 has thus been proved.

Proof of Theorem 6. Let wepp(A4). There exist, like in the fore-
going proof, two rational numbers f# >0 and ¢ > 0 such that weAy,
and the upper external density of the set at the point z is greater than
105.

Suppose now that x is a density point of the set A;,. Hence, there
exists a square K with the center in # whose sides are smaller than §
and such that |[K—A;,| <p|K| and |K ~ A|>108|K|. For every point
gel{ there exists an arbitrarily small square K(g) =« K with the center
at ¢ which may be divided into two congruent rectangles with the inte-
riors K*(q) and K~ (g) in such a way that |K~(¢) ~ A| < B|K~(¢)|. Thus
the set By = K ~ A;, may be covered in the sense of Vitaly with squares
D such that each of them is the union of two congruent trapezes (or triang-
les) (!) with the interiors D* and D~ such that |4 ~ D~ | <8B|D|.
Thus there exists a sequence {D,} of pairwise disjoint rectangles covering
the set B, except, may be, for a set of measure zero.

Put

B1 = U (Aﬁ,d m D:;)

n=1

(!) The squares K (¢) need not have their sides parallel to the coordinate axes
and Vitaly theorem on covering has been formulated in a particular case, there-
fore in our considerations we have to choose squares contained in squares K (q)
situated in accordance with the axes.
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The example considered below shows that the existence of 7-limit values
depends on the space Y of values of a function. The existence of T-limit
values is also influenced by points which are not values of the funetion.
Let f have at a point x the left-hand side limit — co and the right-hand
side limit + oo. If Y is the space of real numbers, then x is not an asym-
metry point, for the sets W' (f, #) and W~ (f, ) are empty and thus iden-
tical. But if we take for Y the set of real numbers with the points + oo
and — oo, then obviously, # is an asymmetry point.
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