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0. Introduction. In differential geometry of submanifolds, it is im-
portant to study the relation between the submanifolds and the structure
of ambient manifold.

For example, in Sasakian manifolds there are two typical classes
of submanifolds. One is the class of invariant submanifolds and the other
is the class of C-totally real (or anti-invariant) submanifolds. In an in-
variant submanifold, the Sasakian structure of the ambient manifold
induces the same structure on the submanifold. In a C-totally real sub-
manifold, a tangent vector of the submanifold is mapped into the normal
space by the Sasakian structure ¢.

There is a long history of the study of invariant submanifolds of the
Sagsakian manifold. The C-totally real submanifolds have been studied
by Yamaguchi and Tkawa [11], Yamaguchi et al. [12], and Yano and
Kon [14], [15].

On the other hand, Kuo [5] introduced the notion of almost contact
3-structure. Since then, Kashiwada [3], Kuo and Tachibana [6], Sasaki
[7], Tachibana and Yu [9], and Tanno [10] studied several interesting
subjects concerning this structure or the Sasakian 3-structure.

In this paper, we shall study the relation between the Sasakian
3-structure and submanifolds.

1. Submanifolds. First we recall the fundamental properties of sub-
manifolds in a Riemannian manifold. Let M be an m-dimensional Rie-
mannian manifold and let M be an mn-dimensional submanifold iso-
metrically immersed in M. Let & (M) be the Lie algebra of vector fields
on M and Z(M)‘ the set of all vector fields normal to M. We denote
by (,) the Riemannian metric tensor field on M as well as the metric
induced on M. The operator of covariant differentiation of M (respec-

tively, M) will be denoted by v (respectively, V). Then the Gauss-Wein-
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garten formulas are given by

V¥ =VxY+B(X,Y), VxN = —A¥(X)+DxN,
X, Y eZ(M), NeZ(M*,

where D denotes the operator of covariant differentiation with respect
to the linear connection induced on the normal bundle of M, and A, B
are both called the second fundamental forms of M which are related
by <{B(X, Y), N) = <AN(X)7 Y).

The second fundamental form B is a vector bundle valued symmetric
bilinear form on each tangent space 7,(M) (x € M) taking values in the
normal space T,(M)-. The second fundamental form A is a cross-section
of a vector bundle Hom(T(M )t, 8(M)), where S(M) denotes the bundle
whose fiber at each point is the space of symmetric linear transformations
T.(M)—>T,(M); i.e., for N e T,(M)- we have

AY: T, (M) > T, (M).

We define a covariant derivative (l~7B) of the second fundamental
form B by

(VxB)(Y,Z) = DxB(Y,2)—B(VxY,2)—B(Y, Vx2),
X,Y,ZecZ(M).
If 7V xB = 0 for all X € (M), then the second fundamental form B

of M is said to be parallel. This is equivalent to (VxA) = 0, where (VxA4)
is defined by

(VxA)N(Y) = Vx{AN(Y))—ADXN(Y)—AN(Vx Y),
X, YeZX(M),NecZ(M)*-.

If the second fundamental form B is identically zero, then M is said
to be totally geodesic. A normal vector field N on M is said to be parallel
if Dy N = 0 for any tangent vector field X.

Let R and R be the Riemannian curvature tensor fields of M and M,
respectively. Then we have

(11) R(X,Y)Z =R(X, Y)Z—-ABY2(X)4 ABX2 (Y)+
+(VgB)(Y,Z)—(VyB)(X,2), X,Y,ZecZ(M).
Hence we have the equation of Gauss:
(1.2) (R(X,Y)Z,W) =(R(X,X)Z,Wy+{(B(Y, W), B(X,Z))—
—(B(X,W),B(Y,2)), X,Y,Z,WeZM).
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Taking the normal part of (1.1), we have the equation of Codazzi:
(R(X, ¥)2)* = (VxB)\(Y,2)—(VyB)(X, 2).

We define the curvature tensor E of the normal bundle of M by
RY(X,Y)N = [Dx, Dy]N—Dx N, X,YeZ(M),NeZ(M)?*.

Then we get the equation of Ricei:
(R(Xa Y)Nu N2> = <RL (Xy Y)NU N2> + <[AN17 ANZ](X); Y))

X, YeZ(M), N,, Ny,e T(M)~.
If RL vanishes identically, then the normal connection of M is said

to be flat. If [AN1, AN2] = 0 for any N,, N, e F(M)L, then the second
fundamental form of M is said to be commutative.

2. Sasakian 3-structure. In this section we recall the definition and
some properties of Sasakian 3-structure (see [2]). Let M be a Riemannian
manifold with metric tensor (, >. We denote by V the covariant differen-

tiation of M.
Assume that M admits three unit Killing vectors &, », and { which

are mutually orthogonal and satisfy
B,
26 =[n,¢], 29=10¢&], 20=7[§&n]
We put
p=VE& p=Vn, 0=V¢ and ® =Va, ¥ =Vg, 6 ="y,

where a, f, and y are 1-forms associated with &, %, and ¢, respectively;
ie, a(X) = <X, &), f(X) =X, n, and y(X) = (X, {). Since &, 5, and
¢ are Killing vectors, @, ¥, and @ are skew-symmetric (0, 2)-tensor fields
and satisfy

(2.1) pt =0, ynp =0, 06L=0,
b =0, d¥ =0, d00 =0, V,p=0, V,p=0, V.0=0.
On the other hand, we have
vi+0n =0, 05+y9l=0, o@nt+yé=0,
(2.2) =0n=—yl, n=¢l=—9f C=9p&=—py

because &, n and { are unit normal Killing vectors. From these equations
we get

VE’E:O? Von =0, V.l =0, ch= —Ven =§,
Ve = =Vl =1, Vin = =V, & =¢.
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A triple {&, n, (} of Killing vectors is called a K-coniact. 3-structure
if all of &, n, and { are K-contact structures. That is, if {£, », {} is a K-con-
tact 3-structure, then it satisfies

¢* = —I+a®é, ¢*=—-I+fQ®n, 06 = _I+.7®C’
(2.3) Oy =p+pQL, o0 =9p+yQR& o =0+a®n,
y0 = —9p+yQ®n, Op=—yp+a®f, oep=—0+R¢,

where I denotes the identity transformation.

A K-contact structure {&, n, (} is called a Sasakian 3-structure or
a normal contact meiric 3-structure if all of &, », and { are Sasakian struc-
tures.

It {&, n, {} is a Sasakian 3-structure, then it satisfies

Vxp = —XQ®&+a®X = R(X, §),
Vyy = —X®@1+8X = R(X, 1),
Ve = —X®t+y®X = R(X, {).

If for a K-contact 3-structure {£&, », {} any two of & 7, and { are
Sasakian structures, then {&, », {} is necessarily a Sasakian 3-structure.
If a Riemannian manifold M has a Sasakian 3-structure, then M is neces-
sarily of dimension 4m +3 (m > 0 is an integer) and orientable.

Let M be a Riemannian manifold with Sasakian 3-structure. Then
the curvature tensor R(X, Y) of M satisfies

(B(X, X)Z, W) —<(R(X, Y)pZ, W) =X, W)Y, Z)—
— X, ZYY, W)+<(pX,Z){Y, oW)—<9Y, Z){X, ‘PW}’

(R(X, Y)Z,W)—(R(X, X)pZ, yW)> = (X, WN(Y,Z)—

X, ZXY, W)+ (yX, Z)<X, yW) —(pY, Z){X, yW),
(R(X,Y)Z,W)—(R(X, Y)0Z, 0W) = (X, W)<¥,Z>—

— (X, ZXY, Wy +<0X,Z)(X, OW) — (0, Z)(X, OW).

The following propositions are well known.

PrOPOSITION 2.1 ([2]). In a Riemannian manifold with triple {&, n, {}
of Killing vectors, any integral manifold of the distribution spanned by &,
n, and { i8 totally geodesic and of constant curvaiure 1.

PROPOSITION 2.2 ([3]). A Riemannian manifold with Sasakian 3-struc-
ture is an Einstein space.
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We denote by D the subspace of T, (M) defined by
= {X|X e T,(M), o(X) = B(X) = y(X) = 0}.

Let K (X, Y) be the sectional curvature of M spanned by unit ‘vectors
X and Y. For a unit vector X, we put

H,(X) = K(X, ¢X), H,(X)=K(X,qyX), H/(X)=K(X,0X).

Then we have the following

PROPOSITION 2.3 ([10]). For any unit tangent vector X (X € D) we
have H,(X)+ H, (X)+ H,(X) = 3.

Typical examples of the manifold with Sasakian 3-structure are
odd-dimensional spheres 8*™*3, projective spaces 8*"+3/{11}, and lens
spaces (see [7]).

Let QP™ be the quaternionic projective space. A unit sphere 8*"+3(1)
and QP™ are related by the Hopf fibering, i.e.:

m: §E(L) - 8F(L)/(§, 0, §) = @P™.

Let M be a Sasakian manifold with Sasakian structure (¢, a, &, {,>).
A plane section in the tangent space T,(M) is called a ¢-section if it is
spanned by a vector X orthogonal to £ and ¢X. The sectional curvature
K (X, ¢X) with respect to a ¢-section determined by a vector X is called
a @-sectional curvature. It is easily verified that if a Sasakian manifold M
has a ¢-sectional curvature ¥ which does not depend on the ¢-section
at each point, then % is a constant in the manifold. A Sasakian manifold
is called a Sasakian space form and is denoted by M (k) if it has the con-
stant @-sectional curvature k. The curvature tensor R(X, Y) of a Sasa-
kian space form M (k) is given by

(2.4) 4B(X,Y)Z = (k+3)[KY,Z2)X —<(X,Z) Y]+
+(k—1)[a(X)a(Z) Y —a(¥)a(Z) X +
+<X,2>a(Y)E—(Y,Za(X) <Y, 9Z)pX +
+<X, ¢Z) oY +2(X, oY) ¢Z].

3. Submanifolds of a space with Sasakian 3-structure. In this section
we shall define and study some submanifolds of a Riemannian manifold
with Sasakian 3-structure.

Let M (dimM = 4m+3) be a Riemannian manifold with Sasakian
3-structure {£, 5, {}. We denote by M a submanifold of M.

Definitions. 1. We say that M is invariant with respect to & or that

(&, @) is invariant on M.if & is tangent to M and ¢X is tangent to M for
any tangent vector X of M.
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2. We say that M is anti-invariant with respect to & or that (&, ¢)
i8 anti-invariant on M if & is tangent to M and ¢X is normal to M for any
tangent vector X of M.

3. We say that M is C-totally real with respect to & or that (£, ¢) is
C-totally real on M if & is normal to M.

Clearly, we can give the same definitions for (7, y) and (¢, 6).

If a submanifold M is C-totally real with respect to ¢ and n and
invariant with respect to {, then without loss of generality it is equi-
valent to say that M is C-totally real with respect to » and ¢ and invariant
with respect to & Therefore, in this case we can simply say that M is
a 2-C-totally real and 1-invariant submanifold. For other terminology we
shall use the same convenience.

If M is C-totally real with respect to £, then ¢X is normal to M for
any tangent vector X of M (cf. [11]).

PROPOSITION 3.1. There is no 3-anti-invariant submanifold in a Rie-
mannian manifold with Sasakian 3-structure.

Proof. Assume that (&, ¢) and (n, y) are anti-invariant. By (2.2)
we have { = pé, i.e., { is normal to M. Hence 60X is normal to M for any
tangent vector X of M. On the other hand, 6§ = — 7 is tangent to M by
virtue of (2.3). This is a contradiction.

THEOREM 3.1. Let M be a 3-invariant submanifold in a Riemannian
manifold M with Sasakian 3-structure. Then M is totally geodesic.

Proof. For the second fundamental form B we have (see [11])
B(X,¢Y) =¢B(X, Y), B(X,yY) = yB(X, Y),
B(X,0Y) =06B(X,Y)

for any X, Y € & (M).
By (1.2) we have

<E(X7 ¢X)pX, X} = (R(X, pX)pX, X>+<{(B(eX, X), B(X, X)) —
_<B(X’X)’B(¢Xr¢x)>

for any tangent vector X of unit length.
Hence

H,(X) = H,(X)+2|B(X, X)If?, H/(X) = H,(X)+2|B(X, X),
H,(X) = H(X)+2|B(X, X)|*.
Consequently, we have
H (X)+H,(X)+H(X) = H(X)+H,(X)+Hy(X)+6 |B(X, X)|*.

Therefore, from this equation, by Proposition 2.3, we have B(X, X)
= 0. Hence M is totally geodesic.
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4. 2-totally real submanifolds. Let M be a (4m +3)-dimensional
Riemannian manifold with Sasakian 3-structure. Let M (dimM = 2m +1)
be a submanifold of M. We assume that M is totally real with respect
to (&, ¢) and (7, ). Since { = p& and 0X = ypX, we can see that (£, 0)
is invariant by virtue of the dimensional condition. For the second funda-
mental form of the submanifold M, we have

(41) AY(X) =0, ¢X =Dy&, AM(Y)=A4Y(X), A"X) =0,
X = Dy, A"(Y)=4"(X), B(X,{) =0,
B(X, 0Y) = 6B(X, Y),
AVO = —AN — _ AN, X, Y eZ (M), N ex(M):.

From (4.1) it follows that M is a minimal submanifold of M. Using
calculations similar to those of [12], we have

PROPOSITION 4.1. Let M be a (2m-+1)-dimensional 2-totally real and
1-invariant submanifold of a Riemannian manifold M (dimM = 4m +3)
with Sasakian 3-structure. Then the submanifold M is of constant curvature 1
if and only if the normal connection is flat.

PrOPOSITION 4.2. Under the same assumption as in Proposition 4.1,
if the second fundamental form of M is parallel, then M i totally geodesic.

Next we shall study the integral formulas of 2-totally real and 1-in-
variant submanifolds. Let M be a (2m+1)-dimensional 2-totally real
and 1-invariant submanifold in a unit sphere §*"+!(1). Let N; be any
unit normal vector of M. Then, for simplification, we write A* instead of
A¥i, We choose a local field of orthonormal frame fe,, ..., €,; Oe,, ..., 66,3
€sm4+1 = C}in M. Then we can see that the normal space T', ()L is spanned

by {@e1, ..., pen; ey, ..., ve,; &, n}. Unless otherwise stated, we use the
conventions that the ranges of indices are the following:

I=1,...,2m,2m+1,
t,j=1,...,2m, a,b=1,...,2m,2m+1,2m+2.

We remark that 4°(X) =0, A"(X) =0, and A({) = 0.
Since M is minimal, we have the following Simons’ type formula [7]:

(4.2) 7’4 = (2m+1)A—Aocd — Ao A4,

where the operators 4 and A are defined by

A =404 and A =) (ad4%ad4®.
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We get
A =2(adA‘)adA‘
3

by the remark stated above.
In the sequel we need the following lemma stated in [1]:

LeEMMA 4.1. Let A and B be symmetric (n, n)-matrices. Then
—Tr(AB—BA): < 2TrA*TrB?,

and the equality holds for non-zero matrices A and B if and only if A and B
can be transformed simultaneously by an orthogonal mairiz into scalar multi-
ples of A and B, respectively, where
0 1 1 0
0 0
- 10 . B = 0 -1

0 0 0 0

Moreover, if A,, A,, and A, are three symmetric mairices such that
—Tr(4,4;,—4;A,) =2Tr(4,)>Tr(4;)?, 1<k, 1<3,

then at least one of the matrices A, must be zero.
Using (4.1) we have the following lemma (cf. [12]):

LEMMA 4.2. Let M be a (2m+1)-dimensional 2-totally real and 1-in-
variant submanifold in a Riemannian manifold M (iimM = 4m+3) with
Sasakian 3-structure. Then the second fundamental form A of M satisfies
VA, VA —4|A? > 0.

We put A, = Tr(A’4’) and A4; = 4;. Since 4, is a symmetric
(2m, 2m)-matrix, we can assume it is diagonal for a suitable frame. We have

D A= AP
From (4.2) it follows that
(V?4, Ay = 2m+1)|A|* — (404, A) — (404, 4)
= @m+1) AR — D) (4 + D Tr(A* 4! — 4 A%,

1#]

Using Lemma 4.1, we have

(4.3)
—(*A, Ay = —(2m+1) AP+ D (4,)— > Tr(A'4’—44%y

$#f
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< —@mADIAP+2 Y 4,4+ > (4

1#j

1 2 0 1 2
- [(2- E?J) IAF — 21 |14 — 5 34— 4,y

t>5

If M is compact, we have
1
0 =5 [414F = [ (P4, vAy+<P4, 43},
M M

Lemma 4.2, (4.3), and this integral formula imply the following

THEOREM 4.1. Let M be a (2m+1)-dimensional compact 2-totally real
and 1-invariant submanifold in a unit sphere S*™+3(1). Then

J [{(2 - 51;) 41 —2(m+5)} I41* — %; (4;— Aj)z] > 0.

THEOREM 4.2. Let M be a (2m +1)-dimensional compact 2-totally real
and 1-invariant submanifold in a unit sphere 8*™+3(1). If the second funda-
mental form A satisfies

I4I* < 2m(2m —5)/(4m —1),

then M 1is totally geodesic.

In the rest part of this section, we shall study a Sasakian space form
M(%k) in a unit sphere S8*"+3(1).

THEOREM 4.3. Let M be a (2m-+1)-dimensional 2-totally real and
1-invariant submanifold in a unit sphere S8*™+3(1). If M is a Sasakian
space form M (k), then M is totally geodesic.

Proof. Since the ambient space is of constant curvature 1 and the
submanifold is a Sasakian space form M (k), we have

L(1-% 1)(kF—1
N caeanmy, vy = PFNETE (p gy OFDED L ()
by virtue of (1.2) and (2.4).
From this equation and (4.1) we get
(4.4)
(Aod, A> = Y (TrA°A®)?
1)(1—k%
= 3" N carao(op), 42820y = PFETE e,

a,b I
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Next, from (1.2) and (2.1) we obtain
(k—1)<4¥(X), ¥y = D' V' [<4° 4V 4%(X), V) —
a I
—(A%(X), Y)(A" A%ey), ep)].

Hence
(48)  (k—1)JAPF = D D <4°4°4°A%(e;), ey — (4o 4, 4).
I

a,b
On the other hand, we have
(Ao, Ay = D I[4%, A°)f = 2¢A0d, A) —2C4° A A° A (ey), &)
a,b

Substituting (4.5) into this equation, we obtain

(4.6) (404, ) = —2(k-1)|AIP.
Therefore, from (4.4) and (4.6) we obtain
Aodtaod, 4y = BFNCZH ypp

Hence we have
1
(4.7) (VA, VA —4|A|} = - AP ((m —B8) (1 — k) —4m —10).

Since k > 0, from Lemma 4.2 and (4.7) we have our assertion.
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