COLLOQUIUM MATHEMATICUM

VOL. LII 1987 FASC. 1

SOME CLASSES OF LOCALLY CONNECTED CONTINUA

BY

[ T. MACKOWIAK | (WROCLAW) anD E. D. TYMCHATY N* (SASKATOON)

Introduction. The first part of the paper contains the generalization of
Whyburn’s theorem about trees and light open mappings to the nonmetric
case. In connection with it several questions are stated with some solutions
for metric continua.

Next we construct two examples. First one solves Lelek’s problem by
showing the existence of a unicoherent continuum which has rim-type 2
and which contains a non-arcwise connected subcontinuum. The second
example shows that there is a rim-finite metric space which has exactly one
hereditarily locally connected compactification.

1. Preliminaries. All spaces considered are Hausdorff and compact and
mappings are continuous surjections. A mapping f from X onto Y is

(i) open if f maps every set open in X onto a set open in Y;

(ii) confluent if for each continuum K in Y, each component of f ~!(K)
is mapped onto K by f (see [1], p. 213);

(ii1) locally confluent if for each point y of Y there is an open set U
containing y such that f|f ~'(cl(U)) is confluent (see [7], p. 106);

(iv) light if each point inverse is totally disconnected (see [16], p. 130).

The next two propositions are well known in the metric case (see [16],
p. 148, and [7], p. 109).

ProprosITION 1. Every open mapping is confluent.

Indeed, if K is a subcontinuum of Y, then f|f ! (K) is open. Therefore, if
U is an open-closed set in f ~!(K), then f(U) is an open-closed set in K ; thus
f(U)=K. Hence, if Q is a component of f~!(K), then it is a quasi-
component of f~!(K) and f(Q) = K.

ProrosiTiON 2. If f: X —» Y is a light locally confluent mapping from X
onto a locally connected space Y, then f is open.
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In fact, let U be an open set in X and xe U. It suffices to show that
f(x)eintf (U). Since f~!f(x) is totally disconnected, there are two open and
disjoint sets G and H such that f~!f(x) cGUH and xeG ccl(G) = U.
Since f(cl(G)\G) is a closed set which does not contain f(x) and f is
locally confluent, we find an open connected set ¥V such that
f(x)eVecl(V)c Y\f(cl(G)\G) and f| f ! (cl(V)) is confluent. Let K be the
component of f~!(cl(V)) containing x. Then f(K) = cl(V). Moreover, since
S (cl(V)) = X\(cl(G)\G), we infer that K = G. Therefore, f(x)e V <cl(V)
= f(K) = f(G) < f(U); thus f(x)eintf (V).

We have the following characterization of light mappings (compare [16],
p. 131; the proof is omitted, because it is simple and technical, but long).

ProrosITION 3. The mapping f: X = Y is light if and only if for every
finite open cover % of X there is a finite open cover ¥ of Y such that if K is a
subcontinuum of Y which is contained in some element of 3, then each
component of f~1(K) is contained in some element of %.

Recall that a generalized arc is a continuum with exactly two non-cut-
points. A tree is a continuum in which each pair of distinct points can be
separated by some third point. Let X be a tree and let p be an arbitrary
fixed point in X. The partial order <, is defined as follows: x, ye X; x <,y
if and only if the pair p, y is separated by x or x =y or x = p. Then x <,y
means that x <,y and x#y. If M,(x)={yeX: x<,y}, then (see [9],
Lemma 2.8; [11], Lemma 4; [14] and [15]).

ProrosiTION 4. If a continuum X is a tree, then

(i) M,(x) is closed and M,(x)\{x} is open for every xe X;

(ii) the multifunction M,: X — X is upper semi-continuous;

(iii) if A< X is connected and ANM,(x) # D # An(X\M,(x)), then
xeA;

(iv) every nonempty closed subset of X contains a maximum element
in <,.

Recall that if n is a cardinal number < ¢ or the ordinal number w, the
space X is said to be of order < n at the point p,

ord, X <n,

if for every neighbourhood G of p there exists an open set H such that
peH = G and card(bd(H)) < n. The points of order < w are said to be
regular (these are the points for which the set bd (H) is finite). A space which
consists exclusively of regular points is said to be regular or rim-finite. It
easily follows from Proposition 4 that

PrOPOSITION 5. Every tree is rim-finite.

A continuum is said to be rational if it has a basis of neighbourhoods
with countable boundaries. A continuum is said to be finitely Suslinian if
there do not exist an open cover 4 of X and an infinite family o of
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pairwise disjoint subcontinua of X such that for each Ae o/, A ¢ G for any
Ge % (see [13]). A continuum is said to be hereditarily locally connected if
every subcontinuum is locally connected. Every 1-dimensional continuum is
called a curve.

The following diagram gives the known inclusions among the above
classes of continua (compare [13], Lemma 2 and Corollary 4):

finitely hereditarily

rim-finite s
arcs — trees — . . — Suslinian — locally
continua )
continua connected
continua
i
\ arcwise
connected
curves
rational
; — curves
continua

In the metric case it is known (see [16], p. 94) that every hereditarily
locally connected continuum is rational. We do not know the answer to the
following:

ProBLEM 1. Does there exist a hereditarily locally connected continuum
which is not rational? (P 1303)

All locally connected metric continua are images of the simple closed
interval (see [5], p. 256); thus they are arcwise connected (see [16], p. 36). In
the nonmetric case we have a more complicated situation (see [12] for open
questions and for references of partial results). In particular we have

ProBLEM 2. Is it true that every locally connected rational continuum is
arcwise connected? (P 1304)

2. Whyburn’s theorem. We will generalize Whyburn’s theorem (see [16],
p. 186) to the nonmetric case (see [3] and [10] for other generalizations).
Throughout this section the results that are used to manipulate nets and nets
of sets are found in [2], [4] and [8].

Let A be a finite subset of a tree X with pe A. We put

M, (x, A) = M,(x)\(U {M,(x")\{x"}: x < x"eA)}).
From Proposition 4 we obtain
PrOPOSITION 6. M,(x, A) is a continuum and X =) {M,(x, A): xe A}.
THEOREM 1 (Whyburn). Let X be a tree, f be an open light mapping from

a space Y onto a space Z, zoc Z and let yoef ' (zo). If g is a mapping from X
onto Z and peg~'(z,), then there exists a mapping h from X into Y such that

g =foh and h(p) = y,.
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Proof. Let X denote the collection of all finite subsets of X which
contain the point p. The set X is directed by inclusion. If AeZ, then
A=ixg, x{,..., x, ). We can assume that x§ = p and

k-1

(U M,(x4, A)nM,(x{, ) #O for k=1,2,...,n,.
i=0

Since f is confluent (by Proposition 1), we can find continua K(x, A) in Y

such that
k-1
(1) yoeK(x§,A) and (U K(x{, A)nK(xi, A) #0O

i=0
for k=1, 2,..., n,,
(2 f(K(x, A) =g(M,(x, A)) for xeA.
Consider a net ¥ = [S,; AeZX] where continua S, are defined by
S.=U{My(x, A) xK(x, A): xeA]}.

Since the space 2* *¥ is compact, this net has a cluster point S. Therefore S is
a limit of a net ¥° = {SJ; BeX°} which is finer than the net .%, i.., there
exists a function ¢: X% — X such that

(3) for every AeX there exists a BeZX® such that ¢(B')> A for
B < B"eZX°,

(4) S¢(B) = Sg for Be 20.

Let S(x) =({x} xY)n S for xe X and let = denote the natural projection
from X xY onto Y. We define

h(x) ==n(S(x)) for xeX.

Since the graph of h is equal to the set S which is compact in X x Y, we infer
that h is an upper semi-continuous mapping (in the sequel we will show that
h is single-valued and therefore h will be a continuous mapping). Now we
will prove

(5 if (x, y)eS(x), then g(x) =f(y).

In fact, let (x, y)eS(x) and suppose, on the contrary, that g(x) # f(y).
Since Z is a Hausdorff space, there are open disjoint neighbourhoods G and
F of g(x) and f(y), respectively. Since g is continuous and X is rim-finite
(Proposition 5), we find an open connected neighbourhood U of x in X such
that the boundary of U (bd(U)) is finite and g(cl(U)) = G. Since f is
continuous, we can find an open neighbourhood V of y in Y such that
f(V)cF.

Consider X! = {Be X% bd(U) < ¢(B)). Since X! is cofinal with Z° we
have S =1im!S3; BeZX'). Take H=Ce2**": Cn(U xV) # Q.. Since H
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is an open set in 2¥*Y containing S, there is BeZ' such that S:,eH for
B< B'eX!.
By the definition of S, and equality (4) we conclude that
(M, (x¢®, 0(B) xK (x¢®, p(B)) n(U x V) # O
for some k=0, 1, ..., n,gs,.
In particular M,(x{®, ¢(B))nU # @; but then M,(xf®, ¢(B)) = cl(U)
because bd(U) = ¢ (B). Therefore
g(M,(xt®, o(B)) =f (K (xf®, ¢(B))) = G
by (2). Since K (x{®, ¢(B)nV # @ and f(V) c F, we obtain
f(K(x¢®, ¢(B))NF + @;

thus G F # @, a contradiction.
We claim that
(6) the set S(x) is degenerate for each xe X.

Indeed, it follows from (5) that S(x) is totally disconnected, because f is
light. Suppose, on the contrary, that (x, y), (x, y")eS(x) and y # ). Since Z
is locally connected (as a continuous image of a locally connected compact
space), there is an open connected neighbourhood U of g(x)(=f(y) =f(y"))
such that f~'(cl(U)) is not connected between y and y'. Therefore there are
two disjoint closed sets P and Q such that yeP, y’eQ and f~'(cl(U))
= Pu Q. Take an open connected neighbourhood V of x with a finite
boundary and such that g(cl(V)) = U. Then

ST = g)nP)u(rg()nQ).

Consider 22 = {Be X% bd(V) < ¢(B)'. Since X2 is cofinal with ° we
obtain S = lim {SJ; BeZX?). Take

H={Ce2**": Cn(Vx(f'(U)nP)) # O and

Cn(Vx(f~'(U)nQ)) # B}

Since H is an open set in 2¥*¥ containing S, there is Be Z? such that S, e H
for B< B'eX?

Since bd(V) =« ¢(B) and V is connected, we infer that the set

N=U M,(x, o(B) xK(x, 9(B)): xcp(B) and M,(x, p(B)nV + O}

is connected. Therefore the relations

N = S, N (cl(V) xf =1 (l(V))) = (cl(V) x P) U (el (V) x Q)

imply cither S, N (VxP)=@ or S,5n(VxQ) =@, a contradiction,
because S,y = Sge H. This completes the proof of Theorem 1.
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The main idea of our above proof is the same as in the metric case, but
the details are quite different. From Theorem 1 we conclude

COROLLARY 1. Let T be a tree (arc) contained in a space Y and let pe T. If
f is a locally confluent light mapping from a space X onto Y and xqef ~*(p),
then there is a continuum X, in X containing x, such that f|X, is a
homeomorphism from X, onto Y.

Since every metric locally connected continuum is an image of an arc,
we obtain, by Proposition 2 and Theorem 1,

CoroLLARY 2. If f is a locally confluent light mapping from a compact
space onto a locally connected metric continuum Y, then there is a locally
connected metric continuum X, in X such that f(X,) =Y.

The following questions remain open:

ProsLEM 3. Can the assumption of metrizability of Y in Corollary 2 be
omitted? (P 1305)

ProBLEM 4. Is it true that if f is an open light mapping from a
continuum X onto a continuum Y which is rim-finite (resp. finitely Suslinian,
hereditarily locally connected, rational and locally connected), then there is a
continuum X, in X such that f(X,) = Y and X, is rim-finite (resp. finitely
Suslinian, hereditarily locally connected, rational and locally connected)?
(P 1306)

We will give some positive answers for Problem 4 in the metric case in
the next section. This problem for arcwise connected continua has a negative
answer. Namely, we have

Example 1. Let
S ={(x,sin(n/x)): 0 <x<1}uU{0,y): -1<y<1}.

If we identify the point (0, 0, 0) with (1, O, 1) and the point (1, 0, 0) with
(0, 0, 1) in the product S x {0, 1}, then we obtain a continuum X which can
be mapped by a two-to-one (antipodal) open mapping f onto an arcwise
connected continuum Y obtained from S by the identification of the point
(0, 0) with the point (1, 0). Moreover, no arcwise connected subcontinuum of
X is mapped onto Y under f.

3. Mappings from metric trees.

LEmMA 1. If U is an open connected subset of a locally connected metric
continuum X and dimbd(U) < 0, then cl(U) is a locally connected continuum.

Proof. This easily follows from the fact that if cl(U) is not locally
connected at p, then p belongs to a nondegenerate continuum K which
consists of points at which cl(U) is not locally connected (see [5], Theorem 1,
p. 245). Since dimbd(U) < 0, the continuum K is not contained in bd(U).
Then U must contain a point at which it is not locally connected. This is
impossible, and the proof is complete.
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LEMMA 2. Let X be a locally connected compact metric space which has a
finite number of components and dimX =1 and let X =G, u ... UG, be a
given open cover of X. Then there exists a system of closed sets F,, ..., F,
satisfying the conditions
(1) X=F,u...uUF,, F, <G, dim{F,nF)<0 fori#j
and each F; has a finite number of components.

Proof. Proceed by induction. For k =2 setting X =G, uUG,, A=
X—-G, and B=X—-G, we have AnB = 0.

Since X is 1-dimensional, each point has small connected neighbourhoods
which have zero-dimensional boundaries (compare [5], Theorem 3, p. 238).
For each xeA take an open connected neighbourhood V, such that
xeV,ccl(Vy) = X\B and dimbd(V,) < 0. Let V,, ..., V, be a finite cover of
A which is formed by such sets. Consider the set V =cl(V})u ... ucl(V)).
Then V has a finite number of components and dimbd (V) < 0. Moreover,
since ¥V N B = @, the number ¢ = inf {d(x, x'): xeV, x! e B} is greater than 0,
where d is a metric in X. Let B(V, ¢/2) be a generalized ball around the set V
with radius ¢/2. It follows from Theorem 16 in [5], p. 234, that all
components of X\ V except. a finite number are contained in B(V, &/2). Take
G=Vul{C: C is a component of X and C = B(V, ¢/2)}. Then G and
X'\ G have a finite number of components, bd(G) U bd (X \G) = bd (V); thus
also dimbd (G) = dimbd( X \ G) < 0. Furthermore, A = G and cl(G) "B = Q.
Therefore, the sets F, = cl(X\G) and F, = cl(G) satisfy conditions (i) of this
lemma for k = 2.

Now assume that the lemma holds for k—1. As we have just proved
there exist two closed sets H and F, such that

(l) X=HUFk, HCGIU...UGk—l9 FkCGk9 dim(Han)<0
and H and F, have a finite number of components.

Since the set H is a locally connected (by Lemma 1) compact metric
space, which has a finite number of components and dim H = 1, the identity
H=HnNG)u ... u(HNG,_,) implies by hypothesis the existence of a
system of closed sets F,, ..., F,_, satistying the conditions

d H=F,v..UF_,, FcHNG, dim(F,nF)<0fori<j<k
and each F, has a finite number of components.

Conditions (i) follow easily from (1) and (2).

From Lemma 2 we conclude (compare [5], Theorem 11, p. 288)

Lemma 3. If X is a 1-dimensional locally connected metric continuum, and
A is a O-dimensional closed subset of X, then for every ¢ > 0 there exists a
finite system of locally connected continua K, ..., K, satisfying the conditions
@) X=K,u... vK,, diam(K) <e, dim(K;nK) <0, 4AnK;nK;=0

Jor every system of distinct subscripts.
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Proof. Since A is closed and 0-dimensional we can find a finite system
of open sets V,, ..., V,, such that Ac Vyu ... UV, cl(V)ncl(V) =9 for
i #j and diamcl(V) < ¢/3. If 6 = inf {d(x, x"): xecl(V), x"ecl(V)), i #j and
i,j=1,...,m}, then § > 0. Consider 0 < n < min {4/3, &/3}. Since dim X = 1,
there exists a system of open sets G,,..., G, satisfying the conditions
X=G,uU...UG,, diam(G) <n, G,nG;nG;=Q for I<sh<i<j<k If
F,, ..., F, is a system of closed sets satisfying conditions (i) of Lemma 2,
then the components K, ..., K} of sets F,, ..., F, satisfy the conditions

(1) X=Ku...UK’ diam(K')<n, dim(K’ K% <0,
K; nK{ nK}] = O for every system of distinct subscripts.

We can assume that there is an index iy such that

2 K/nA#@ if and only if i<i,.

Consider the union K{u ... UK{ -, and let K,, ..., K;, be components

of this union. Then the collection K;, ..., K;,, K[, ..., K, has all the
required properties (i) of this Lemma by (1), (2) and the choice of the number
n (these components are locally connected by Lemma 1).

Now we will prove

LemMA 4. If X is a 1-dimensional locally connected metric continuum, then
there are a metric tree T and a continuous mapping f from T onto X such that
card f ~!(x) < 2 for each xe X and

dim {xe X: card f "' (x) > 2} =dim {te T: card f " (f (1)) > 2} < 0.

Proof. We define, by induction, a sequence of 1-dimensional locally
connected metric continua X, and onto mappings g;,: X;— X, for k <j
such that ' :

(1) X, =X,
(2) cardg, !, x(x) < 2 for each xe X, and dim A4, <0 where
A, =cl({xe X,: cardg;}; , (x) = 2}),
(3) if cardg,);4(x) =2 for some xeX; then g} og,,(x) is a one-
point set,
(4) if S is a simple closed curve in X, then

diamg, , (S) < 1/(k—1).

Since X is a 1-dimensional locally connected metric continuum, we infer,
by Lemma 3, that there is a finite system of locally connected continua
K, ..., K, satisfying the conditions X, =X =K, v ... K, , diam(K))
<l, dm(K;nK) <0 for i#j and K,nK;,nK;=@ for h#isj+#h
Since X, is a continuum we may assume that the sets K; are indexed so that
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i-1
for each i there exists x;e K; n | K. For each i there exists a continuum L;
j=1
i-1
homeomorphic to K; and such that Ly ~n {J L; = |y;} where y; corresponds to
j=1

. "=
-1

x; in each of L; and |J L;. Let X; =L, v ... UL, . Letg,,: X, X, be
>

J
the natural mapping. Then conditions (2), (3) and (4) are satisfied for g, ;.

Let &€, > 0 be such that if B, < X, and diamB, <&, then diamg, , (B)
< 1/2. We write each L; in X, as a finite union of locally connected continua
Kiyu ... UK,  satisfying (i) of Lemma 3 with ¢ =¢, and 4 = 4,. Exactly

as above we construct a continuum X, = (J {L;;:i=1,...,n;j=1,..., ny;}
and an onto map g;,: X3 — X, satisfying (2), (3) and (4). Then g3 3(L) is
connected for each i.

Continuing this procedure with some obvious modifications we define
T =invlim { X,, g;,} where each X, is a union of a finite family Li, s
of continua and each g;,' (Ki,....ix_ .») is @ continuum. It follows that T is

locally connected and T contains no simple closed curve. Hence, T is a

dendrite. Also, f =inv limg;, is the required map.
k<j

LemMma S. If f: X - Y is a continuous and finite-to-one mapping from a
compact space onto a rim-finite (rational) continuum Y, then X is rim-finite
(rational, respectively).

Proof. Let x be an arbitrary point of X and let U be an open set in X
containing x. Since f ™! f(x) is finite, there are two open and disjoint sets G
and H such that f~!f(x) c GUH and xeG < cl(G) = U.

Since f(cl(G)\G) is a closed set which does not contain f(x) we find an
open set ¥V such that f(x)e V < cl(V) = Y\f(cl(G)\G) and the boundary of
V is finite (countable). Consider the set W= G nf ™! (V). Then W is an open
set containing x and contained in G. Moreover, the set W has a finite
(countable) boundary.

CoRrOLLARY 3. If f is an open light mapping from a continuum X onto a
metric rim-finite continuum Y, then there is a rim-finite continuum X, in X such
that f(X,) =Y.

Indeed, since Y is locally connected (see [13], Lemma 2), there is a
finite-to-one mapping g from a metric tree Z onto Y by Lemma.4. Theorem
1 implies the existence of a mapping h from Z into X such that fh = g. Then
f1h(Z) is finite-to-one; thus x, = h(Z) is rim-finite by Lemma 5.

Similarly, we obtain

CoRrOLLARY 4. If f is an open light mapping from a metric continuum X
onto a rational locally connected continuum Y, then there is a rational locally
connected continuum X, in X such that f(X,) =Y.
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4. Rim-type and arcs. If 4 is a subset of a continuum X we let A’ denote
the set of limit points of 4. We let A!® = 4. If X is an ordinal and A" is
defined for each A <a we let

i _ [ it a=A+1,
T IN{AM A <a) if o« is a limit ordinal.
S

We say a space X has rim-type < n if X has a basis U; of open sets such that
(bd(U)f™ = O for each i. It is known that every rational metric continuum
has rim-type being a countable ordinal (see [5], p. 290).

A continuum has rim-type 1 if and only if it is regular. It follows that a
continuum of rim-type 1 is a tree if it is unicoherent. In [6], p. 64, Lelek gave
an example of a continuum of rim-type 3 which is unicoherent and arcwise
connected and which contains a non-arcwise connected subcontinuum. He
asked in a letter whether there exists a unicoherent continuum X which has
rim-type 2 and which contains a non-arcwise connected subcontinuum. It is
the purpose of this section to answer Lelek’s question in the affirmative by
constructing such an example.

Example 2. We construct a sequence of disjoint continua X; in

Euclidean 3-space E3. If P and Q are points of E> we let FQ—-denote the line
segment with endpoints P and Q. We let X _, be the following subcontinuum
of the xy-plane in E* (see Figure 1).

‘Fig. 1
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X_;=(0,1]x{0,1,271, ..., 27" ..} x{0}hu
v {(p27%0,0(p279, 279, 0)| ge{0, 1, ...}, pe{0, ..., 29}}.

We define a sequence X,, X, ... of pairwise disjoint polygonal arcs which
limit to X_, as follows:

Let X, be the polygonal arc in the plane z = 1 with consecutive vertices
(0,1,1), (0,0,1), (1,0, 1), (1,1, 1), 272, 1, 1).

Suppose n >0 and X, is a polygonal arc in the plane z = 27" with
initial point (0, 1, 2~") and terminal point (27"~ 2, 1, 27" at the consecutive
vertices of X, are prescribed. Let P and Q be two consecutive vertices in X,
where P separates Q and (0, 1,27") in X,,

P=(p2 "+a27™" 2, r27"+p2°""2 27",
0 =(q2 "+y2™"" %, 127"+427""2 27",

where p, ¢, r, te{0,1,...,2"} and «, B, 7, 6€{—1,0, 1}.
Ifr,t>1 let
P/ — (pz-n+a2—n—3’ r2—n+ﬁ2—n—3’ 2—n—l),

Q' = (g2 "+y27""3, 127" 46273, 27y,

In X,,, let the segment P'Q’ correspond to the segment E in X,.
Ifr=1and t=0 then p=gq, a =4, 6§ =0 and we let

P = (p2 273, 2704 2703, 270y,

R =(p2 "+a27 "3, 27 14273 27 1),

§ =(@p+1)27 "t =273, 2714273 goem),
S =(@p+1)2 " 1=27"3, 271 ey,

T = (p2-" 44273, 2771, 27" 1),

Q = (P2 "+a27""%,0,27""Y).

In X,,, we let the polygonal arc with consecutive vertices P, R', §', §”, T,
Q' correspond to the segment E in X,.
If r=t=0then g=p+1, f =6 =0 and we let
P =(p2~"+a27°""3,0,2° "7},
R =(2p+1)27""1-27m"3/0,27"1),
S =(2p+1)2 1273, 27l _p7nm3 el
S"=(2p+1)2~""1 271273 27y
T =(2p+1)27""1,0,27"}),
Q =(g2™"+y27""3,0,27"Y),

In X,,, we let the polygonal arc \ with consecutive vertices P, R, §’, S”,
T', Q' correspond to the segment PQ in X,.

4 — Colloquium Mathematicum 52.1
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Finally, if r =0 and t =1 then p=gq, a =y, =0 and we let

P =(p2""+a27""3,0,27"7Y),

R =(p2 "+a27""3, 2771 27" 1),

S =(@p—127"" 142773, 27 27y,

§" =(2p=1)27"" 142773, 2707347t 27y,
T = (p27"+027""3, 27" 1427773, 277,

Q' =(p2"+a27""3, 277482773, 27N,

In X,,, we let the polygonal arc with consecutive vertices P, R, §', §", T,
Q’ correspond to the segment PQ in X,.

By induction the polygonal arc X, is defined for each non-negative
integer n. Let X be the quotient space obtained from X_, uX,u X, U ...
by identifying all of the points on the line x =0, y = 1. Then X is clearly a
continuum. It is easy to see that X has a basis of open sets U; such that
bd (U;) has at most four limit points. Hence, X is a rational continuum of
rim-type at most two. Since X is not locally connected, the rim-type of X is
at least two. It follows from [6], Lemma 3, that X is unicoherent.

Remark. The above example may be modified so that X _, contains no
simple 4-od (i.e. no continuum homeomorphic to the following subcontinuum
of the plane:

Y =(-1,11x{0})u({0} x[—1, 1]))

and X has a basis of open sets U; such that bd(U;) has at most three limit
points. It is an unresolved question of Lelek whether the number three can
be reduced to two or even one.

5. Compactifications of regular spaces. It is known (see [5], p. 290-291)
that every regular metric space is topologically contained in a compact
regular space and there is a space of order <4 which is not topologically
contained in any compact space of order < 4. We give a simple and stronger
example.

Example 3. Let (r, ¢) denote polar coordinates in the plane E2. Put
(compare Fig. 2)

X={r,9):0<r<l,p=00rnju U {(I/n,9): 0<p<n}u
n=1

[« o]

v U, m/2n): 12k <r<1(2k—=1),k=n,n+1,...}u
n=1

O U {r W@n+ 1) YQk+1) <7< 1/(2k+2), k=n,n+1, ...},
n=1

It is clear that the space X is of order < 3 at each of its points. Let X* be a
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Fig. 2

compactification of X which is hereditarily locally connected. Since X is
locally compact the growth X*—X is compact. Moreover, X*—X is a
continuum because X is the union of an increasing sequence of continua
which have connected complements in X.

Suppose that a, be X*— X and a # b. Then we find two sequences {a,}
and {b,} such that a =lima,, b =1limb, and a,, b,e X for each n=1, 2, ...
Since the one-point compactification X U {(0, 0)} of X is locally connected at
(0, 0) and lima, = limb, = (0, 0), we can find pairwise disjoint arcs a,b, (we
consider the subsequences of {a,} and {b,} if it is necessary) in X. We can
assume that {a,b,} is convergent in X*. This implies that X* has a non-
degenerate convergence continuum, a contradiction. Therefore the unique
hereditarily locally connected compactification of X is equal to X u {(0, 0)}.

Finally, remark that the point {(0, 0)} in X U |(0, 0)} is of order w.
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