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Introduction. The problem to characterize the extreme points of
U(E, F), the unit ball in the space of linear operators from a Banach space
E to a Banach space F, was investigated by several authors (see, e.g., [1],
[3], [4], [7], the literature cited there, and the survey article [2]). The
most desirable characterization seems to be that an operator T is extreme
iff its adjoint T* maps a dense subset of the extreme points of the unit
ball in F* into the extreme points of the unit ball in E*. (It is easy to see
that an operator satisfying this condition is extreme.)

A theorem of that type, extending a result of Blumenthal et al. [1],
is stated by Fakhoury in [4]. However, the proof given there appears
to be incomplete (see Remark 2 below) and it is the aim of this note to
provide a complete proof of that theorem.

Notation. For a compact Hausdorff space X we let C(X) be the Banach
space (under the supremum norm) of continuous real-valued functions on
X and identify its dual with the space M (X) of real Radon measures on X
which will always carry the weak® (or vague) topology. If ¢: X — X is
an involution (i.e. 0 composed with itself is the identity on X) which is
continuous, we let

Co(X):= {feC(X): foo = —f}

be the Banach space of odd continuous functions on X. Its dual may be
identified with the set

M (X):={ue M(X): uoo = —u}

of odd measures on X, where uoo(f):= u(foo) for f in C(X). An identi-
fication of the fixed points of o yields another compact Hausdorff space X’
and another continuous involution ¢': X' - X' such that C,(X’) is
isometric to C,(X). Therefore, since we are only interested in the spaces
0,(X), we may and do always assume that ¢ has at most one fixed point.
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Then the map
w: X > MY(X):= {peM,(X): |l <1}
defined by
T —> Wy = %(81:_36(:))

is a homeomorphic embedding (¢, denotes the point mass concentrated
at x). Further, the set exM!(X) of extreme points in M.(X) is exactly
{w,: x € X,z # o(x)}. Therefore, its closure is either exM(X)u {0} or
ex M) (X) itself, depending on whether ¢ has a non-isolated fixed point
or not.

The Theorem. We now state Fakhoury’s theorem in a version slightly
different from that given in [4].

THEOREM. Let X and Y be compact Hausdorff spaces, let o: X - X
and 1: Y — Y be continuous involutions, and suppose that X is a metrizable
space. Let U be the convex set of linear operators from C,(X) into C (Y) with
norm not greater than 1.

Then for T € U the following statements are equivalent:

(1) T is an extreme point of U.

(2) There ewists a dense open set D < exM:(Y) such that T*(D)
c exM}(X).

We have already mentioned that (2) implies (1). To prove the con-
verse we proceed in three steps, each step represented by a lemma.

The Lemmata. Our first lemma is a part of the proof of Theorem 1
in [1] and stated without proof.

LeEMMA 1. Let K be a compact Hausdorff space. Then the set-valued maps
&+ and D~ from the unit ball. M*(K) of M(K) into its non-empty compact
convex subsets, defined by

Ot(u):={peM(K):0<rv<put}, D (u):=peM(K):0<r<pu},

are lower semicontinuous in the semse of Michael [5].

LEMMA 2. Let X and o be as in the statement of the Theorem. Suppose
that A € M)(X) i8 such that the support of A* contains at least two points.
Then there exists a continuous map g: M2 (X) — M.(X) such that

(@) g(—p) = —g(p) for all p,

(b) letg(w)<1 for all u,

(c) g(4) #0.

Proof. By our assumption there exists a compact subset F of X such
that 0 < AT (F') < A*(X). Let » € M'(X) be defined by »(h):= A* (h|F)
for A in C(X). From Lemma 1 and from Michael’s continuous selection
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theorem [6] we infer that there exist continuous maps f* and f~ from
M!(X) into M'(X) such that

0<fr()<pt and O<f (p)<p” foral g,
fra) =v, @A) =1, fH(-3)=f(-2=0.
Define f: M,(X) -~ M'(X) by
(@) === (@I (15 (@I~ (@l

Since the norm is weak® continuous on the cone of positive measures,
J is continuous. Further, ||ju+f(ux)||<1 holds for all u (see, e.g., [1],
Pp. 761).

Finally, let

g(p):= t[f(p)—f(uw)oo+f(—u)oo—f(—um)l.

Then one easily verifies that ¢ maps M, (X) into itself, is continuous,
and satisfies (a) and (b). It remains to show that g(1) # 0 holds. If not,
then

0 =47 Ipl+»12" | — (2" c0) Ivll — (vo o) 1A~ 1,

hence |p||(A"0e—41") = [|A7||(v—roo). Now A~ 0o = At because A is odd,
and we get 1 = a(v—voo) for some a > 0. From 0 <» < At we derive
0 <voo < Atoo = A7, which implies that » and »o o are mutually singular.
Therefore A* = av must hold. But this fact and the choice of » let us end
up with the absurd inequality

0 < Y (X\F) = av(X\F) = ai* ((X\F)nF) = 0.

The next lemma is modelled after a similar lemma due to Sharir [7],
Theorem 1.

LEMMA 3. Let Y and © be as in the statement of the Theorem, E a Banach
space, and 8: E — C.(Y) an extreme point of U(E,C (Y)). Then the set
D:= {uecexM}(¥): |8* ()| = 1}

8 dense in ex M1(Y).
Proof. We first observe that exM,(Y) is open in its closure, and

therefore a Baire space. The map e* — |e*|| is weak® lower semicon-
tinuous on E*, which implies that the set

D, := {peexM}(Y): |8*(w)l >1—1/n}

is open for each positive integer n. Hence, by Baire’s category theorem,
the lemma is proved if we can show that each of the sets D, is dense.
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Suppose this is false for some n. Choose u, in exM.(Y) not in the
closure of D,. Then u, # 0 and u, # —pu,; hence there exists a con-
tinuous real-valued function k¥ on the closure of exM!(Y) such that
0<k<1,k(p) =1, k(—po) =0, and k(u) = 0 for all x in D,. Then the
function A on Y defined by

h(y) : = 4 [k(w,) —k(— )]

is in C,(Y) and 0 < ||h|| < 1. Choose ¢* in E* with |¢*]|] =1 and define
H: E—~C,(Y) by

[H(e))(y) : = (1/n)h(y)e” (e)

for ¢ in F and y in Y. Then H is linear, |[H|| < 1, H # 0, and it is easily
checked that ||S+ H| < 1 holds. Consequently, § would not be extreme
and we obtain a contradiction.

Proof of the Theorem. Let T be an element of ex U. We first show that
T*(exM,(Y)) is contained in Z := {aw,: 0 < a <1,z € X}. Suppose that
T*(w,) =: 4 is not in Z for some a in Y with a # z(a). Then the support
of A* contains more than one point. Let g: M,(X) - M,(X) be a map
as described in Lemma 2 and define a linear operator G: C,(X) — C,(Y) by

[G(m)](y) : = {g(T*(e,)), h)

for y in Y and h in C,(X). Then G # 0 and ||T + G| < 1, which is impos-
sible because T is an extreme point of U.

Next, we infer from Lemma 3 that ||7%(»)| =1 for all » in a
dense subset D of exM(Y). Therefore, the image T (D) is contained in
{w,:® € X, ® # o(x)} which is exM,(X). We infer also that T*(exM;(Y))
is contained in the closure of exM.(X) which in turn is contained in
exM!(X)u {0}. Consequently, D is in fact equal to exM}(Y)\[(T*)~1(0)],
and therefore open in exM.(Y).

This completes the proof of the Theorem.

Remarks. 1. Denoting, as we already did, the homeomorphic embeddings
of X and Y into exM}(X) and M:(Y) by the same symbol w and defining
¢:Y - X by ¢(y) := 0 'T"w,, we see that, under the hypotheses of the
Theorem, an operator 7 in exU is induced in the following sense:

There exists a continuous map ¢: ¥ — X such that

9(z(¥)) = o(p(y)) for all y e Y,

[T(f)1(y) = f(p(y)) for all y e ¥ and feC,(X),

@~ (2o) 0 (Y \ {y,}) has an empty interior, where z, and y, are the fixed
points — if there are any — of o and 7, respectively.

Since, conversely, an induced operator is always extreme in U and
since C,(X) is separable iff X is metrizable, we also get Fakhoury’s theorem
as in [4].
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2. The gap in the proof of Theorem 14 in [4] occurs on page 20'7,
where it is implicitly assumed that for a non-zero non-extreme element »
of M}(X) the set

O e MYUX): o' = fv, feI(),1<f<2}

contains elements different from ». But this can be true only if || < 1.
This means that from the arguments in [4] one can only conclude that
for every p in exM!(Y) the norm of T*(u) is either 0 or 1. Obviously,
this fact combined with Lemma 2 would be sufficient to prove the Theorem;
however, since Lemma 3 does not depend on any special property of E,
it seemed justified to include it and use it in lieu of Fakhoury’s result.
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