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The aim of this papef is to prove the following theorem:

THEOREM. Let X be a topological space, let #(X) denote the o-field
of Borel subsets of X, and let m be a o-finite regular measure on #(X). Further,
let f: X X X — X be a binary transformation with the following properties:

1° f is continuous and (#(X)x #(X), #(X))-measurable; the equa-
tion f(x,y) =2 has a unique solution y, respectively x, for any fived
values of x, z, respectively y, z; this solution depends continuously and
(#(X) x #(X), #(X))-measurably on », z, respectively on y, 2.

2° For fized x, yeX the transformations f(x,-) and f(-,y) preserve
measure. :

Then for any two sets A, Be #(X) of positive measure the set f(A X B)
has interior points.

If X = R, the real line with the usual topology, m is the Lebesgue
measure and f(z, y) = +y, then the theorem asserts that the set 4 + B
= {x+y: ved, ye B} contains an interval. This is a classical result due
to Steinhaus [5].

The case of X = R", with the n-dimensional Lebesgue measure and
f(z,y) = ¢ +y, which is but a slight generalization of Steinhaus’ result,
may also be regarded as classical. Various proofs have been supplied by
several authors. Certain modifications of this result have also been proved.
For a more complete bibliography of the subject the reader is referred
to [3] and [4].

Steinhaus’ theorem for X = R" is a particular case of that in which X
is a locally compact group, m is the Haar measure (left or right invariant),
and f is the group operation. The assertion in this case follows from the
fact that the convolution of the characteristic functions of sets of finite
measure is a continuous function (cf., e.g., [2], Theorem (20.16), p. 296).
This observation is due to A. Weil (see [2], Corollary (20.17)).
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The theorem presented in this paper comprises Weil’s result in the
case of a o-compact unimodular group (i.e., a group in which the left
invariant measure is also right invariant). It also shows that in this case
not all algebraic properties of the group operation are essential.

1. We start with some definitions and notation. If X is any set
and if f is a binary transformation X X X — X, then the mapping X - X
obtained from f by fixing one variable is denoted by f(z, -) or by f(-, ¥)
(i.e., the first of these symbols stands for the mapping y — f(z, y) and
the second one for z +— f(x,vy)). If A, B<c X, x, yeX, then f(4, y), res-
pectively f(x, B), is the image of the set A, respectively B, under the
mapping f(-, y), respectively f(zx,-); this notation is used for brevity
instead of f(A X {y}), respectively f({z} x B). .

A one-to-one mapping of X onto X is called a bijection.

A measurable space is a pair (X, .#), where # is a o-field of subsets
of X; a measure space is a triple (X, #,m) such that (X, #) is a
measurable space and m is a non-negative measure defined on .#.
A bijection g: X — X is called bimeasurable if both ¢ and ¢g~' are meas-
urable. A measurable mapping g: X — X is said to preserve measure if
m (g~ (E)) = m(E) for all Ee 4. In the case of a bimeasurable g this
is clearly equivalent to: m(g(E)) = m(FE) for all Fe #. Sets of measure
zero are called nullsets. A measurable mapping ¢g: X — X is called non-
-singular if ¢~'(E) is a nullset for any nullset E c X.

Throughout the sequel we restrict attention to o-finite measures.
For a o-finite measure m we denote by M the product measure m X m,
i.e., the measure defined on the o-field .# X .# of subsets of X X X gen-
erated by the sets A x B with A, Be .#, determined uniquely by the con-
dition

M(AXB) =m(A)ym(B) for A,Be #.

If X is a topological space, we denote by #(X) the o-field of Borel
subsets of X, i.e., the o-field generated by the open subsets of X. A measure
m defined on #(X) is regular if it is finite on compact sets and satisfies

(1) m(E) = sup{m(K): K <« E, K compact}
= inf{m(U): U o E, U open}

for any set Ee #(X). Thus, a regular measure is fully determined by
its values on all open sets or on all compact sets.

Our terminology is adopted from [1].

Let X be any set and let f: X x X — X. We introduce the following
solvability condition:

(S) The equation f(x, ¥) = 2 has a unique solution y, respectively =,
for any fixed values of z, z, respectively y, 2; this solution will be denoted
by ¢(=, 2), respectively w(z, y).
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Condition (S) means that, for fixed x, y, 2¢X, the mappings

(2) f('y?/);f(w,');
hence also
(3) (-52), v(2,°),

are bijections. The relations

y=p@,2), @=y(y) and z=/[(z,y)

are equivalent. Clearly, for a fixed 2e¢ X, mappings (3) are mutually inverse.

We first prove . '

PROPOSITION 1. Let X be a topological space and let m be a o-finite
reqular measure on #(X). If f: X x X — X satisfies condition (S), y 18
continuous, f(xz,-) and (z,-) are measurable and preserve measure (for
any fized ®, zeX) and if ¢ is (B(X)x #(X), #(X))-measurable, then for
any two sets A, Be #(X) of positive measure the set f(A X B) has interior
points.

Remark 1. Clearly, ¢ (z, 2) and y(2, y) are analogues of the operations
272z and 2y~' in the group case. The proof given below is nothing else
but an adaptation of Weil’s proof of Steinhaus’ theorem. The function o
introduced below (formula (6)) is a direct analogue of the convolution
%4 *xp With respect to the left Haar measure (cf. formula (10)).

Proof of Proposition 1. Let 4, Be #(X) and suppose that
(4) m(A)>0 and m(B)> 0.

We have to show that
(5) int(f(A x B)) #0.

According to (1), 4 and B contain compact sets of positive measure;
we may thus assume that they are themselves compact.
Consider the function w: X — R given by

(6) w(2) = m(ANy(z, B)).
We shall show that o is continuous and satisfies

(7) [w(x)dm(z) = m(4)m(B).
X

Fix 2,¢X and ¢> 0. The set y(z,, B) is compact, hence of finite
measure. In view of (1) there exists an open set U o y(z,, B) such that

(8) m(UN\y(2,, B)) < e.
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By assumption, y is continuous; consequently, B being compact,
it is easy to find a neighbourhood W of z, such that (W x B) < U, i.e.,

(9) (2, B)c U for ze W.

Further, for all ze X we have
m(y(z, B)) = m(B) = m(yp(z,, B)),
since y(z, -) preserves measure. Hence, by (8) and (9),
m(U\y(z, B)) <& for ze W.
‘Writing, for brevity, D = y(2, B) and D, = y(?,, B) we thus obtain
|w(2) — w(20)| = [m(AND)—m(AND,)| = |m(AND\Dy) —m(ANDy\D)|
K< m(D\Dy) +m(D,\D) < m(UND,) +m(UN\D) < 2¢ for ze W,

and so o is continuous.
Now we prove equality (7). Observe that

(10) 0(2) = [14(@)28(p(®, 2)dm(2);
X

in fact, the integrand equals 1 if and only if zeA and ¢(x, 2)e B; equiv-
alently, iff #¢A and xe w(2, B) (and is zero otherwise). Thus the right-
-hand sides of (6) and (10) are equal. Integrating (10) over X with respect
to 2z and applying the Fubini theorem, we obtain

Jo@am@) = [1@)] [ 2slp(@, 2)dm ()] dm().
X X

But ¢(2,2)e B if and only if z¢ f(x, B). Hence the integral in square
brackets is equal to m(f(z, B)), i.e., to m(B), since, by assumption, f(=, -)
preserves measure. This proves (7).

Consider the set 2 = {zeX: w(2) > 0}; this set is open by the conti-
nuity of o and is non-empty in view of (4) and (7). For ze¢ 2 by (6) we have
ANny(z, B) #0, i.e., ze f(4A x B). Consequently, 2 = f(4 x B) and asser-
tion (5) follows. The proof is complete.

2, The assumption that w(z, ) preserves measure is rather incon-
venient and it is natural to ask whether it can be eliminated, e.g., by
requiring that f preserves measure in both variables (so that measure
invariance assumptions could be expressed in terms of f only). In what
follows we show that this can be done under the conditions of the Theorem
formulated at the outset.

For convenience we introduce two further conditions, (CS) and (MS),
which are extensions of condition (S) concerning a mapping f: X x X — X.
Condition (S) makes sense if X is any set, (CS) and (MS) are meaningful
if X is a topological space and a measurable space, respectively:
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(CS) f satisfies (S), and f, ¢ and y are continuous.

(MS) f satisfies (S), and f, ¢ and yp are (# X.#, #)-measurable.
(Clearly, ¢ and y are the mappings defined in (S); in condition (MS),
M denotes the o-field of measurable subsets of X.)

' Condition (CS) implies that mappings (2) and (3) are homeomorphisms.
Similarly, condition (MS) implies that they are bimeasurable.

If X is a topological space, then condition (CS) makes sense as well
a8 condition (MS) with # = #(X). Let us denote this latter condition
by (BS):

(BS) f satisfies condition (MS) with respect to the o-field # = #(X).

Condition (CS) implies (BS) in the case of a topological space with
a countable base, since then #(X x X) = #(X) x Z4(X).

Note that conditions (CS) and (BS) are jointly equivalent to as-
sumption 1° of the Theorem.

The following lemma gives an alternative form of conditions (S),
CS8 ), and (MS).

LEMMA 1. Let F and G be transformations X X X — X x X defined by

(11) F(e,y) = (@, f(®,y) and G,9) = (fx,9),9).

Then conditions (S), (CS), and (MS) are accordingly equivalent to the
requirement that the transformations F and G are bijections, homeomorphisms,
and (M X M, # X M)-bimeasurable mappings.

Proof. The assertion concerning condition (S) is obvious. Evidently,
f is continuous, respectively (.# X .#, #)-measurable, if and only if F
(and G) is continuous, respectively (.# X .#, # X #)-measurable. Since

F—l(wrz) = ({L',q>(w,z)) and G_l(zy?/) = ('/’(27?/)) ?/),

F~! and @' are continuous, respectively measurable, if and only if so
are ¢ and yp.

The next lemma shows how the fact that f coordinatewise preserves
measure can be expressed in terms of mappings (11).

LeMMA 2 (). Let (X, .#,m) be a measure space with m o-finite. Let
f: XxX > X be a transformation satisfying condition (MS) and let

F: XXX - X XX be defined by (11). Then the following two conditions are
equivalent:

(i) F preserves the product measure M = m X m.
(ii) For every Be # and for almost every xe<X we have

m(f(w’ B)) = m(B).
(1) This lemma has been communicated to the author by M. Misiurewicz.

8 — Colloquium Mathematicum XXXVI.2
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Remark 2. In condition (ii) “for almost every xe¢X” means ‘for
all zeX off a nullset, which depends on B”. If we additionally assume
that the measure m is uniquely determined by its values on the members
of some countable subfamily #,c # (i.e., if there exists no measure
m’ # m such that m'(E) = m(E) for Ee .#,), then this nullset can be
chosen independently of B. Consequently, in that ecase (i) and (ii) are
equivalent to

(iii) For almost every xeX the mapping f(x, ) preserves measure.

Proof of Lemma 2. F is bimeasurable by Lemma 1. For A4, Be A
we have

F(AXB) = {(x,2): zed, z¢f(x, B)}.
Hence
(12) M(F(AxB)) = [m(f(z, B)dm ().
4

By the definition of the product measure, we also have

(13) M(A x B) = m(A)m(B) = fm )dm ().

Now, condition (ii) means precisely that, given any set Be .#, the
integrand in (12) coincides a.e. with the integrand in (13), and this is
the case if and only if integrals (12) and (13) are equal for all 4 #. Con-
sequently, condition (ii) is equivalent to the equality of the right-hand
sides of (12) and (13) for all A, Be .#. Condition (i) is just the equality
of the left-hand sides of (12) and (13) for all A, Be .#. Thus (i) and (ii)
are equivalent, as asserted.

From Lemma 2 we easily derive

LeMMA 3. Let (X, #,m) and f be as in Lemma 2 and suppose that
for almost every x and y the transformations f(x,-) and f(-,y) preserve
measure. Then for every Ee # and for almost every zeX we have

m((p(E, z)) =m(E) = m('l’(z, E))

Proof. Consider the bimeasurable transformations F, G: X x X —
— X X X defined by (11). In virtue of Lemma 2, F preserves the measure
M = mxm, and so does G, by symmetry. Hence, also the mapping
® = GoF~'! is bimeasurable and preserves measure. Further, observe
that @(z, 2) = (2, ¢(=, 2)). Applying once more Lemma 2 with f replaced
by ¢’ and F by @', where ¢'(2,x) = ¢(x, 2) and P’ (2, 2) = P(z, 2), we
conclude that ¢ has the asserted property. The assertion concerning y
follows by symmetry.

Remark 3. If m has the property formulated in Remark 2, then
the assumptions of Lemma 3 imply (cf. Remark 2):
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(iv) For almost every zeX the mappings ¢(-, 2) and (2, ) preserve
measure.

This is a partial answer to the question whether the invariance of
measure with respect to mappings (2) implies its invariance with respect
to mappings (3). What we actually need, however, is an analogue of (iv)
holding for all, not only for almost all zeX. Observe that Lemmas 2 and 3
are of purely measure-theoretic nature, and thus nothing better than (iv)
can be expected. In order to obtain the invariance with respect to map-
pings (3) for all z we have to pass to the case where X is a topological
space.

First, we show that under the assumptions of the Theorem a prop-
erty which holds a.e. is automatically satisfied on a dense set.

LEMMA 4. Let X be a topological space, let m be a non-zero regular
measure on #(\X), and let f: X X X — X be a mapping such that, for every
fized x, ye X, f(x, ) is a surjection and f(-, y) 18 continuous and non-singular.
Then every nmon-empty open set has positive measure.

Proof. Suppose that m(W) = 0 for some non-empty open set W.
Take an ze¢X. Since f(x,-) is surjective, there exists a yeX such that
f(z, y)e W. Fix such a y and write g = f(-, y). By assumption, g is contin-
uous and non-singular. Hence the set U = ¢g~' (W) is open and m(U) = 0.
Clearly, e U. It follows that every point zeX has a neighbourhood of
measure zero; thus all compact sets have measure zero, and so, by (1),
m is the zero measure, a contradiction.

Now we can prove the invariance of m with respect to mappings (3),

PROPOSITION 2. Under the assumptions of the Theorem the mappings
(-, 2) and y(z, ) preserve measure for every zeX.

Remark 4. This proposition corresponds to the fact that in a uni-
modular group not only translations, but also symmetries of the form
z a2 'z and y —2y~' (2 fixed) preserve the Haar measure.

Proof of Proposition 2. Fix 2y¢ X, ¢ > 0 and a compact set B c X.
The set y(z,, B) is compact, hence of finite measure. By the regularity
of m (formula (1)), there is an open set U o y(2,, B) such that

(14) m(U) ——m(tp(zo, B)) < €.

By assumption, y is continuous; consequently, B being compact,
it is easy to find a neighbourhood W of 2, such that (W x B) c U, i.e.,

(15) y(2,B)c U for ze W.
In view of Lemma 3 (with # = #(X)), we have
(16) m (y(z, B)) = m(B)



248 M. E. KUCZMA

for ze X\Z, where Z is a nullset (depending on B). The set X\Z is dense
by Lemma 4 (unless m = 0, but in this case the proposition is obvious),
and so it intersects W. Choose any point ze W\Z. This point satisfies
conditions (15) and (16), which imply that m(B) < m(U), and this together
with (14) gives '

m(y (2o, B)) > m(B) —e.

Assuming that 2, and B are fixed and passing with ¢ to 0, we obtain
(a7) m(y (2, B)) = m(B),

which holds for any z,¢ X and any compact set B = X.
In view of the symmetry of assumptions with respect to the factors
of the product X x X (“x-axis’ and ‘‘y-axis’’), we have also

(18) m(p (4, z,)) > m(4)

for any z,¢X and any compact set A < X. Setting in (17) and (18)
B = ¢ (A4, 2,), i.e., A = (24, B), we infer that (17) and (18) are actually
equalities. This means that

(19) m(p(E, z)) = m(E) = m(y(2o, E))

for £ <« X compact. Since ¢(-,2,) and w(zy,+) are homeomorphisms,
the measures

#(X)>E > m(p(B,2) and 2(X)>E > m(p(z, B)

are regular. Consequently, (19) holds for all sets e #(X). This completes
the proof, since z,¢e X was chosen arbitrarily.

Now the Theorem follows immediately from Propositions 1 and 2.
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