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1. Introduction. By a parameter ¢ we mean a continuous real-valued
function defined on [0, 1] with ¢(0) = 0 and having the property that
there is a positive number 8, such that both of the functions ¢ and ¢
(w(h)= @(h)+ h) are strictly monotone on [0, §,). Let P be the collection
of all parameters. If f is a real-valued function defined on R, # € R, and
@ € P, define the lower g¢-derivative of f at by

D, f(#) = limint [f(z —@(h)) —f(x —@(h) —h)] /h.
ot

The upper @-derivative, D¥f(x), is defined analogously; and if D, f(x)
= D’f(x), denote the common value by f?(x) and eall this the ¢-dersv-
ative of f at . This notion was introduced by Sindalovskii [6]. He, however,
did not require ¢ and ¢ to be monotone and continuous.

The parameter class P naturally splits into three sets, 8, R, and. L,
according to whether for 0 < b < §, we have —h < ¢(h) < 0, p(h) < —h,
or ¢(h) > 0, respectively. From the viewpoint of a generalized type of
differentiation we found R and L to be not very interesting, since, for
example, it is an elementary matter to see that if ¢ € R [L] and a. con-
tinuous function f has a ¢-derivative at x, then f has a right [left] deriv-
ative at 2. Consequently, most of the results in this paper concern para-
meters ¢ in 8.

Following Sindalovskii, we say that a parameter ¢ has property S;
if, for every set P which has zero as a point of density, either ¢~!(P) or
v~ '(P) has positive lower density at zero; and ¢ has property S; if there
are a ¢ (0< g¢<1l)and a 8 (0< < 8,) such that for every x €(0, J)
and every closed set P < [0, 2] with |P| > (1 — o)z we have either

lp(P)| > elp(z)] and |p(x)] > o
or

lp(P)l > ely(x)l and |p(z)| > o=,
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where g depends only on ¢. We then let 8* denote the class of all parameters
in 8 which have properties 8; and 8. Examples of such parameters are
those of the form ¢(h) = ¢h®, where ¢< 0, a>1,and ¢ # —1if a = 1.
In particular, the familiar notion of symmetric differentiation is obtained
by taking ¢ = —1/2 and a = 1.

The following result is a special case of a more general theorem in [6]:

THEOREM S. Let f: R — R be measurable and let p € 8*. If D*f(z) < + oo
Sfor almost every x € R, then f i3 differentiable almost everywhere.

In particular, this theorem entails that if f is ¢-differentiable almost
everywhere, then it is differentiable almost everywhere. In Section 2
of this paper we further show that f must be differentiable except on a first
category set. (If a property holds for every x except for those in a first
category set, we adopt the notation of saying that the property holds for

nearly. every x.)
In Section 3 we prove a monotonicity theorem involving the ¢-deriv-

ative and examine some consequences. One consequence is that if a meas-
urable. function f has a finite ¢-derivative on R, where ¢ € 8*, and if f*
is bounded from above or from below, then f* must belong to the Baire
class one.

2. Parametric and ordinary differentiation. From Theorem S it
follows that if ¢ € 8* and a function f is ¢-differentiable almost everywhere
on R, then f is actually differentiable almost everywhere on R. In this section
we augment this result by showing that such an f will be differentiable
nearly everywhere. We begin by establishing a relation between the ¢-de-
rivatives and the so-called strong derivatives of a function. The lower
strong dertvative of f at z is defined by

D, f(x) = liminf [f(§)—f(n)]/(&—n),

¢ 'Iz;bs’:c. x)

and the upper strong derivative is defined analogously (cf. [1]).

THEOREM 1. If f: R— R has the Baire property, then for any ¢ € P
both of the following equalities hold mearly everywhere:

(i) Dyf(w) = D, f(=),

(ii) D*f(x) = D*f().

Proof. Sentence (ii) follows from (i) by considering the function —f;
consequently, we need only to prove (i).

Clearly, D.f(z) > D_ f(») for every « € R, and hence it suffices to

show that the set A(f) = {x: D, f(x) > D f(x)} is of the first category.
Furthermore, A (f) is the countable union of all the sets

A(f,a) = {: D f(x) > a> D, f(x)} (a rational),
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and as for each A (f, a) we have A(f, a) = A(g,, 0), where g,(x) = f(x) —ax,
we need only to show that 4 (f, 0) is of the first category. For each positive
integer n, set

@, = {z: flz—o@(h) < f(e—@(h)—h) for 0 < h < 1/n}.

Then 4 (f, 0) clearly equals the countable union of all the sets 4,(f, 0)
= B,nA(f,0).

Now, suppose that A4,(f, 0) is of the second category. Then 4,(f, 0)
is of the second category in every open subinterval of some open interval I.
But, according to the following lemma, this implies that D, f(z)> 0
for each x in some subinterval J of I; that is, 4, (f, 0)nJ =9, a contra-
diction. Hence, by proving the following lemma, we complete the proof
of the theorem.

LeMMA. Let f: R—~ R have the Baire property and let ¢ € P. If @,
i3 of the second category on every open subinterval of the open interval I,
then f is nondecreasing on some open subinterval J of I.

Proof. Without loss of generality we assume |I| < 1/n and choose
a ¢’ such that 0 < é’< 8 and

(1) lp(8)1+ 68" < II]/3.

Let J be the open interval with the same center as I, but having
length &’. It is this interval J on which f is nondecreasing. To see this,
let a and b belong to J with a < b, let 2’ be a residual subset of R such that
f12 is continuous, let ¢ € 2n(a, b), and let 8 > 0. We will show that f(a)
< f(0) < f(d). Suppose L is an open interval in (a, b) with ¢ € L such that

If(x) —f(e)]< e for all 2 e ZnL.

SBet H = {h: at+heLland K = {#: » = a+¢(h)+h, h € H}. Clearly,
K is an interval and K < I because of (1). Now, {z: © = a+¢(h)+ P,
a+h e LnX} is residual in K, and &, is of the second category in K.
Hence, there are an #, € KN P, and an h, € H such that z, = a+¢(hy)+ b,
and a-+hy € LnZ. Then

0 gf(wo‘_‘l’(ho)) —f(wo —@(hy) —ho) = f(a+ho) —f(a) < f(e) +e—f(a),

and since this holds for each ¢> 0, we have f(a) <f(¢). Next, let H’
={h: b—hel} and K' = {: ¢ = b+¢(h), h € H'}. As before, K’isan
interval and K' < I. Also {#: ¢ = b+¢(h), b—h € L} is residual in K’
and @, is of the second category in K’. Hence, there are an , e K'n®,
and an h, e H' such that z, = b+ ¢(h,) and b —h, € LnZ. Then

0 gf(wl —'P(hl)) —f(wl —@(h,) “‘hl) = f(b) —f(b—h,y) < f(b) —f(c)+s.
Consequently, f(¢) < f(b) and the lemma is proved.
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We are now in a position to state the main result of this section.

THEOREM 2. Let f: R — R be measurable and let ¢ € 8*. If f is ¢-dif-
ferentiable almost everywhere, then f is differentiable (almost everywhere and)
nearly everywhere.

Proof. As Sindalovskil [6] points out, f°(z) can be infinite only on
a set of measure zero and, as a consequence, Theorem S guarantees that f
is differentiable almost everywhere. Thus, f must have the Baire property,
and Theorem 1 shows that f is differentiable nearly everywhere.

3. Monotonicity and related results. If we let f: R — R be the charac-
teristic function of a point, and let ¢ € 8%, we see that f* = 0. So, the fact
that f* is nonnegative need not imply that f is monotone unless something
in addition to measurability is assumed for f. The Darboux property is
a sufficient condition; indeed, membership in the class M_,, introduced
in [2], is necessary and sufficient as the next theorem shows.

Definition. A function f: R— R belongs to the class M_, it f
is measurable and if for each # € R we have

liminff(?) < f(x) < limsupf(¢t).
t-z t—z

THEOREM 3. Let fe M_, and ¢ € 8*. If f has a nonnegative p-deriv-
ative at each point in R, then [ is mondecreasing on R.

Proof. Assume that f*(x) > 0 for each z. The general case then follows
by considering the function f(x)+ ex for each.e > 0.

Suppose there are two numbers a and b with a < b and f(a) > f(b).
From Theorem S we see that f is continuous almost everywhere. Let x,
be a point of continuity of f in (@, b) and let @ be a number in (f(d), f(a))
different from f(x,). Then we are assured that one of the two sets KE°
= {z €[a, d]: f(x) < a}or E, = {r €[a,d]: f(z) > a} must contain a sub-
interval of (a, b). For definiteness, suppose E® contains such a subinterval.
(The other situation is handled analogously.) Let (¢, d) be an interval
in E° such that

(2) ¢ = inf{z: (z,d) < E°.
Since f¥(¢) > 0, there is a number é such that 0 < 6 < 4, and
(3) fle—@(k)—h)< flc—@(h)) for all 0 < h< 4.

Hence, f(x) <a for all z e (¢ —p(d) — 8, d) —{c}. But since fe M_,,
it follows that f(¢) < a; that is,
(4) ceE°.

Since f(a) > a, we see that ¢ > a and that (2) conflicts with (3) and (4).
This contradiction completes the proof.
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Next we prove a slight generalization of this theorem which will
be used later in this section.

OOROLLARY 1. Let fe M_, and ¢ € 8*. Suppose that f has a finite
p-derivative everywhere in R and f¥(x) = 0 for almost every « in R. Then f
i mnondecreasing.

Proof. Let E = {x: f*(x)< 0} and let g be a continuous nondecreas-
ing function on R such that g’'(x) = + oo for each @ € E. (S8uch a func-
tion g exists according to Theorem 6 in [6]). Let & be a positive number
and set F(z) = f(x)+ eg(x). Theorem 3 indicates that F' is nondecreasing,
and since this holds for each positive &, the result follows.

In the example given in the first paragraph of this section we saw an
instance of a measurable function f for which f°(2) > 0 for every x and
yet f was not monotone. However, there is clearly a continuous function g
which agrees with f at “most” places, which is monotone, and which
has the same g@-derivative as f. The next theorem shows that this situation
is typical.

THEOREM 4. Let ¢ € 8°* and let f: R — R be a measurable p-differentiable
fundtion with f*(x) > 0 for each = € R. Then there are a st T, whose comple-
ment 18 nowhere dense of measure zero, and a nondecreasing function g: R —> R
for which

(i) f(z) = g(x) for each z €T,

(ii) fP(x) = g%(x) for each x e R.

Furthermore, if f*(x) t8 finite for all x, then g i3 continuous on R.

Proof. From Theorem 2 we know that f is differentiable almost
everywhere and nearly everywhere. Since f is differentiable nearly every-
where, the theorem in [4] assures us that f is continuous except at a nowhere
dense set of points. Let T be the set of points of continuity of f. Then the
complement of T' is nowhere dense of measure zero.

Let @ denote the interior of T. We first prove that f|@, the restrie-
tion of f to @, is nondecreasing, from which it readily follows that f|T
is nondecreasing since the complement of @ is nowhere dense and f is
continuous at each point of 7. In order to show that f|G is nondecreasing,
there is no loss of generality in assuming that f*(z) > 0 for all x.

Let I be any component of @. Then f|I is nondecreasing according to
Theorem 3. Suppose there are two points ¢ and % in G such that ¢ < 9
and f(&) > f(n). Let (a,d) be the component of G containing & If
a = sup{f(«): « € (a, )}, pick any y such that f(5) <y < a and note
that, since f*(b) >0, we have

{e: f[b,2) < (y, )} #9.
Now put

(6) @y = sup {@: f[Gn(d, o0)] & (v, )}.

§ — Colloquium Mathematicum XLV.1



130 M. J. BVANS AND P. D. HUMKE

Since f*(x,) > 0, there is a 8 such that 0 < 4 < 8, and f(x, —¢(h) —h)
< f(xo—@(h)) for 0 < h < 8. However, (x,, #,—¢(8))n@ #* &, and hence
there is an interval I < («,, #,—¢(8)) such that f(I) < (—oo, y]. Now,
let J = {wo—@(h)—h: v,—¢(h) eI} and note that f(J)< (—oo,y].
But this contradicts (5) since JNG = @. It follows that f|@ is nonde-
creasing.

Defining g: R —> R by

g(z) = inf{f(t): t e @ and ¢t > x}

we see that (i) is clearly satisfied. Now, let , € R and & > 0. For each
h > 0, there is an A* with 0 < h* < sh such that ,—¢(h+h*) and
2y —@(h+h*) —h —h* both belong to G. Then

9(20—p (k) —g(30—@(h) —h) _ g(@s—@(h+h")) —g(zs—(h+h") —h—h%)
. ! < L

_ F(@—p+ 1) —flwo—@(h+2") —h—1*) B+A*
B W —

Hence D%g(x,) < f%(x,)(1+¢). Since this holds for each &> 0, we
have D%g(2,) < f°(2,). Similarly, we can show D,g(z,) > f*(a,), and so
g% (x,) exists and equals f*(x,).

If f*(x) is always finite, then clearly the nondecreasing function g
can have no discontinuities.

In [3] Filipezak showed that if f: R — R is approximately contin-
uous and has a symmetric derivative everywhere, then this symmetric
derivative must belong to the Baire class one. Theorem 4 complements
this result by yielding the following observation concerning measurable
functions:

COROLLARY 2. Let f: R — R be measurable and ¢ € 8*. If f*(x) exists
everywhere and i3 bounded either from above or from below, then there is
a continuous function g such that f(x) = g(x) except possibly on a mowhers
dense set of measure zero and f* = ¢°. In particular, f* belongs to the Baire
class one. '

As another application of Theorem 4 we note that Corollaries 1 and 2
of this paper can be used to prove the following result. We omit the proof
here since it is essentially identical to the proof given for the symmetric
derivative in [2], Theorem 6.

THEOREM 5. Let f: R—»> R be measurable and have a finite p-deriv-
ative for ¢ € 8*. If f® is bounded from above or from below and is a
Darboux function, then f° also has the Denjoy property ; that i8, for each inter-
val (a, B), {x: f*(z) € (a, p)} 18 either empty. or has positive Lebesgue measure.
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