VOL. XXXII

1975

FASC. 2

PRODUITS TENSORIELS INJECTIFS D'ESPACES DE SIDON

PAR

FRANÇOISE LUST (ORSAY)

Soient E un espace de Banach et $(x_k)_{k=0}^{\infty}$ une suite bornée d'éléments de E. On dira que $(x_k)_{k=0}^{\infty}$ est une suite de Sidon si les normes $\sum_{k=0}^{\infty} |a_k|$ et $\left\|\sum_{k=0}^{\infty} a_k x_k\right\|$ sont équivalentes lorsque $(a_k)_{k=0}^{\infty}$ décrit l'ensemble des suites complexes nulles à partir d'un certain rang.

Suivant la terminologie de Meyer [5] on dira que E est un espace de Sidon si toute suite bornée $(x_k)_{k=0}^{\infty}$ d'éléments de E contient soit une sous-suite convergente en norme, soit une sous-suite de Sidon.

Il est clair que dans un espace de Sidon E toute suite convergente pour la topologie $\sigma(E,E')$ est convergente en norme (E' désignant le dual de E). D'après le théorème de Šmulian il en résulte que tout ensemble compact pour la topologie $\sigma(E,E')$ est compact. On appelle propriété de Schur cette dernière propriété.

Par exemple, tout espace de dimension finie, tout quotient de $l^1(\mathbf{Z})$ qui est dual d'un sous-espace de $C_0(\mathbf{Z})$ est un espace de Sidon.

Soient E et F deux espaces de Banach. Leur produit tensoriel algébrique $E \otimes F$ est un sous-espace de $\mathscr{L}(E',F)$ ou de $\mathscr{L}(F',E)$. Soit $E \otimes F$ le complété de $E \otimes F$ pour la norme de $\mathscr{L}(E',F)$ (ou $\mathscr{L}(F',E)$). C'est aussi un sous-espace fermé de $\mathscr{L}(E',F'')$ (ou $\mathscr{L}(F',E'')$) qui est le dual du produit tensoriel projectif $E' \otimes F'$ (voir [2]).

On démontre le

Théorème 1. Si E et F sont deux espaces de Sidon, leur produit tensoriel injectif $E \hat{\otimes} F$ est un espace de Sidon.

Si E et F sont deux espaces de Banach, on désigne par $\mathcal{L}(E_s', F_s)$ le sous-espace fermé de $\mathcal{L}(E', F)$ formé des applications u dont la transposée u envoie F' dans E. Ce sont aussi les applications de E' dans F continues pour les topologies $\sigma(E', E)$ et $\sigma(F, F')$.

PROPOSITION 1. Soient E un espace ayant la propriété de Schur et F un espace de Banach. Toute application $u \in \mathcal{L}(E_s', F_s)$ est une application compacte de E' dans F.

L'application ${}^tu\colon F'\to E$ est continue pour les topologies $\sigma(F',F)$ et $\sigma(E,E')$. Elle envoie la boule unité de F', qui est $\sigma(F',F)$ -compacte sur une partie de E qui est $\sigma(E,E')$ -compacte, donc compacte. La transposée tu étant compacte, u est aussi compacte, d'après [1], § 6.4.

On démontrera que si E et F sont des espaces de Sidon, $\mathscr{L}(E_{\rm s}', F_{\rm s})$ est un espace de Sidon. Son sous-espace fermé $E \otimes F$ sera aussi un espace de Sidon. On ne sait pas si sous ces hypothèses $E \otimes F$ est égal à $\mathscr{L}(E_{\rm s}', F_{\rm s})$.

PROPOSITION 2. Soient E et F des espaces de Sidon. Toute suite bornée $(u_k)_{k=0}^{\infty}$ dans $\mathcal{L}(E_{\rm s}', F_{\rm s})$ contient soit une sous-suite de Sidon, soit une sous-suite (u_k') convergente dans $\mathcal{L}_{\rm s}(E_{\rm s}', F_{\rm s})$, c'est-à-dire il existe u dans $\mathcal{L}(E_{\rm s}', F_{\rm s})$ telle que pour tout e' dans E' et tout f' dans F'

$$u'_k(e'\otimes f') \xrightarrow{k\to\infty} u(e'\otimes f').$$

S'il existe un élément $e' \in E'$ et une sous-suite de Sidon dans F extraite de $(u_k(e'))_{k=0}^{\infty}$, la suite $(u_k)_{k=0}^{\infty}$ contient évidemment une sous-suite de Sidon dans $\mathscr{L}(E'_s, F_s)$; de même, s'il existe un $f' \in F'$ tel que $({}^t u_k(f'))_{k=0}^{\infty}$ contienne une sous-suite de Sidon dans E.

Il reste donc à étudier le cas où $(u_k)_{k=0}^{\infty}$ est une suite bornée dans $\mathscr{L}(E_{\rm s}',\,F_{\rm s})$ telle que

- (i) $(u_k(e'))_{k=0}^{\infty}$ est un ensemble relativement compact dans F pour tout $e' \in E'$,
- (ii) $({}^tu_k(f'))_{k=0}^{\infty}$ est un ensemble relativement compact dans E pour tout $f' \in F'$.

On utilise le résultat suivant ([3], § 5):

Soient A un espace topologique compact, B un espace métrique, $\mathscr P$ un ensemble de parties de A recouvrant A, et $\mathscr C_{\mathscr P}(A,B)$ l'espace des fonctions continues φ définies sur A, à valeurs dans B, muni de la topologie de la convergence uniforme sur les parties de $\mathscr P$. Soit $(\varphi_k)_{k=0}^{\infty}$ une suite dont l'ensemble des termes est relativement compact dans $\mathscr C_{\mathscr P}(A,B)$. Alors il existe une sous-suite convergente dans $\mathscr C_{\mathscr P}(A,B)$.

L'espace A est le produit $B_1(E')_s \times B_1(F')_s$ des boules unités de E' et F' munies des topologies $\sigma(E',E)$ et $\sigma(F',F)$; l'espace B est le corps des complexes; $\mathscr P$ est l'ensemble des parties de la forme $\{e'\} \times B_1(F')$ ou $B_1(E') \times \{f'\}$; la suite $(\varphi_k)_{k=0}^{\infty}$ est définie par $\varphi_k(e',f') = \langle u_k(e'),f' \rangle$. La continuité de φ_k par rapport à l'ensemble des variables résulte de ce que l'image par u_k de $B_1(E')$ est compacte dans F et que, dans $B_1(F')$, la topologie $\sigma(F',F)$ est la même que la topologie de la convergence uniforme sur les compacts de F.

Soit Γ la fermeture de $(\varphi_k)_{k=0}^{\infty}$ dans $\mathscr{C}_{\mathscr{P}}(A,B)$. Les éléments de Γ sont des applications linéaires de E' dans F, dont les transposées envoient F' dans E, donc $\Gamma \subset \mathscr{L}(E'_s, F_s)$.

Par hypothèse $(u_k)_{k=0}^{\infty}$ est précompacte dans $\mathscr{L}(E_s', F_s)$ pour la structure de la convergence uniforme sur les parties $\{e'\} \times B_1(F')$ et $B_1(E') \times \{f'\}$. La boule unité de $\mathscr{L}(E_s', F_s)$ est l'intersection des boules unités de $\mathscr{L}(E', F)$ et $\mathscr{L}(F', E)$ et est donc complète pour cette structure uniforme. La suite $(\varphi_k)_{k=0}^{\infty}$ est relativement compacte dans $\mathscr{C}_{\mathscr{P}}(A, B)$.

PROPOSITION 3. Soient E et F des espaces de Banach qui vérifient la propriété de Schur. Alors toute suite bornée dans $\mathcal{L}(E_{\rm s}',F_{\rm s})$ qui converge dans $\mathcal{L}_{\rm s}(E_{\rm s}',F_{\rm s})$ converge en norme, c'est-à-dire $\mathcal{L}(E_{\rm s}',F_{\rm s})$ vérifie la propriété de Schur.

Soit $(u_k)_{\kappa=0}^{\infty}$ une suite bornée dans $\mathscr{L}(E_s', F_s)$ convergeant vers $u \in \mathscr{L}(E_s', F_s)$ pour la topologie de $\mathscr{L}_s(E_s', F_s)$. On peut supposer u = 0. On considère l'application

$$T: E' \to C_0(\mathbf{Z}, F), \quad e' \to (u_k(e'))_{k=0}^{\infty}.$$

La transposée ${}^{t}T$ est définie par

$$l^1(Z, F') \to E, \quad (f'_k)_{k=0}^{\infty} \to \sum_{k=0}^{\infty} {}^t u_k(f'_k).$$

D'après la proposition 1, T est une application compacte. Pour tout compact K dans $C_0(Z, F)$ il existe une suite $(\omega_k)_{k=0}^{\infty}$ positive ou nulle tendant vers 0, telle que, pour tout $x = (f_k)_{k=0}^{\infty}$ dans K, on a $||f_k|| \leq \omega_k$. Donc pour tout e' dans $B_1(E')$ on a $||u_k(e')|| \leq \omega_k$, ou encore $||u_k||_{\mathscr{L}(E'_8, F_8)}$ tend vers 0 lorsque k tend vers l'infini.

Les propositions 2 et 3 entraînent le théorème 1.

Remarques. (i) On a vu que $\mathscr{L}(E_{\rm s}',F_{\rm s})$ s'identifie à un sous-espace fermé de $\mathscr{C}\big(B_1(E')_{\rm s}\times B_1(F')_{\rm s}\big)$ muni de la topologie de la convergence uniforme sur $B_1(E')\times B_1(F')$. D'après le théorème de Lebesgue une suite bornée dans $\mathscr{L}(E_{\rm s}',F_{\rm s})$ converge faiblement vers un élément de $\mathscr{L}(E_{\rm s}',F_{\rm s})$ si et seulement si elle converge ponctuellement sur le produit $B_1(E')\times B_1(F')$ vers un élément de $\mathscr{C}\big(B_1(E')_{\rm s}\times B_1(F')_{\rm s}\big)$.

(ii) La démonstration du théorème 1 donne la structure des suites de Sidon $(u_k)_{k=0}^{\infty}$ dans $E \hat{\otimes} F$. Nécessairement il existe un $e' \in E'$ (ou un $f' \in F'$) tels que $(u_k(e'))_{k=0}^{\infty}$ (ou $(u_k(f'))_{k=0}^{\infty}$) contienne une sous suite de Sidon dans F (ou E).

Exemple. Le théorème 1 entraı̂ne que si les $(E_i)_{i=1}^n$ sont des espaces de Sidon, leur produit tensoriel injectif $E_1 \hat{\otimes} \dots \hat{\otimes} E_n$ est aussi un espace de Sidon.

Soit C_{Λ} l'espace des fonctions continues sur le groupe T des nombres complexes de module 1 dont le spectre reste dans un sous-ensemble Λ du groupe Z, muni de la norme uniforme. Les polynômes trigonométriques de la forme

$$P(t) = \sum_{\lambda \in \Lambda} a_{\lambda} e^{i\lambda t}$$

sont denses dans C_{Λ} . Par définition Λ est un ensemble de Sidon si C_{Λ} est isomorphe à l^1 ou encore si la suite $(e^{i\lambda t})_{\lambda \in \Lambda}$ est une suite de Sidon dans C(T); C_{Λ} est alors un espace de Sidon. Il peut l'être encore sans que Λ soit un ensemble de Sidon.

THÉORÈME 2. Soit l un entier positif fixé et soit Λ l'ensemble des entiers positifs de la forme $3^{k_1} + \ldots + 3^{k_l}$ où les k_i $(i = 1, \ldots, l)$ sont des entiers positifs croissants. Alors C_{Λ} est un espace de Sidon.

On n'a qu'à prouver que C_A est isomorphe à un sous-espace fermé de $l^1 \, \hat{\otimes} \, \dots \, \hat{\otimes} \, l^1$ (l fois). L'isomorphisme fait correspondre à

$$P(t) = \sum_{k_1 < k_2 < \dots < k_l} a_{k_1 \dots k_l} \{ \exp[i \cdot 3^{k_1} t] \dots \exp[i \cdot 3^{k_l} t] \}$$

la matrice $(a'_{p_1...p_l})$ définie par $a'_{k_1...k_l} = a_{k_1...k_l} = a'_{\sigma(k_1...k_l)}$ pour toute permutation σ des indices et $a'_{p_1...p_l} = 0$ si deux des indices sont égaux.

D'après la définition de la norme dans $l^1 \hat{\otimes} \dots \hat{\otimes} l^1$ et la symétrie de la matrice $(a'_{p_1...p_l})$, sa norme est équivalente à

$$\sup_{(\exp[i\theta_k])\in l^\infty} \Big| \sum_{k_1 < \dots < k_l} a_{k_1 \dots k_l} \{\exp[i\theta_{k_1}] \dots \exp[i\theta_{k_l}]\} \Big|.$$

Cette quantité est évidemment supérieure ou égale à $||P(t)||_{\infty}$. D'autre part, soit μ la mesure positive de masse 1 sur T définie par le produit de Riesz

$$\mu = \prod_{k=1}^{\infty} (1 + \cos(3^k t + \theta_k)).$$

Alors

$$\hat{\mu} \left(3^{k_1} + \ldots + 3^{k_l}\right) = \exp\left[i\theta_{k_1}\right] \times \ldots \times \exp\left[i\theta_{k_l}\right]$$

et

$$\Big|\sum_{k_1 < \ldots < k_l} a_{k_1 \ldots k_l} \{ \exp\left[i\theta_{k_1}\right] \times \ldots \times \exp\left[i\theta_{k_l}\right] \} \Big| = \Big|\int P(t) d\mu(t) \Big| \leqslant \|P(t)\|_{\infty}.$$

Ceci termine la démonstration du théorème.

Ajouté aux épreuves. Après que ce travail a été soumis, un nouveau résultat de Rosenthal [6] lié au même sujet a été annoncé. On en tient compte dans [4].

TRAVAUX CITÉS

- [1] Dunford-Schwarz, Linear operators, Vol. I, New York 1958.
- [2] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Memoirs of the American Mathematical Society 16 (1966).
- [3] Espaces vectoriels topologiques, Cours à Sao Paulo, 1964.
- [4] F. Lust, Produits tensoriels injectifs d'espaces faiblement séquentiellement complets, Colloquium Mathematicum 33 (1975), sous presse.
- [5] Y. Meyer, Recent advances in spectral synthesis, Conference on Harmonic Analysis, Maryland 1972, Lecture Notes in Mathematics 266.
- [6] H. Rosenthal, A characterization of Banach spaces containing l_1 (à paraître).

Reçu par la Rédaction le 15.9.1973