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COMPLETION VARIETIES

BY

W. BARTOL, D. NIWINSKI anpD L. RUDAK (WARSZAWA)

This paper contains an answer to a question posed by H. Hoft in 1974
([2]). To state the problem we need some definitions and notations (for those
not defined here see e.g. [1]).

A signature is a pair {(F, n) where F is a set and n: F - . We say that
feF is an n(f)-ary operation symbol. A partial algebra A is an algebra of
signature {F, n) iff for every feF it has an n(f)-ary partial operation f“4
and no other fundamental operations. We assume that a signature (F, n) is
fixed for all algebras considered below.

An inner extension of a partial algebra A =(A, (f*),) is a partial
algebra A’ = (A, (f*);¢) with f# < f# for every fe F. A’ is an inner comple-
tion of A if it is total. Let A* be the set of all inner completions of a partial
algebra 4 and for a class ¥ of partial algebras let #™* be the class of all
inner completions of algebras in ). If A = (A, (f*),) and B = (B, (%)
are two partial algebras, then a mapping h: A — B is a homomorphism of 4
into B iff for any feF and a,,...,a,,€ A (clearly this sequence is empty
when n(f) =0), if (a,,...,ay)eDom f4 then (h(a,),..., h(ayy))e Dom f*
and h(f*(ay,...,ay;)) =f%(h(ay),..., h(ayy)). If such h is onto, then B is
said to be a homomorphic image of 4. A subalgebra of a partial algebra A
= (A, (f*;o) is any partial algebra B = (B, (f®);) such that B c 4 and for
any feF and b,,...,byneB, f%(b,...,byy) is defined in B (and then
BBy, sbupy) =fA(by,.... bup) iff f4(by,..., byy) is defined in 4 and be-
longs to B. Direct products of partial algebras are defined componentwise in
a natural way.

For a class ) of partial algebras let H(X) be the class of all
homomorphic images of partial algebras in )¢, let S(.¢) be the class of all
isomorphic copies of subalgebras of partial algebras in ¢ and let P(X) be
the class of all isomorphic copies of direct products of partial algebras in Jf".

Hoft’s problem can now be stated as follows: characterize those partial
algebras A for which the equality HSP(A*) = [HSP(A)]* holds. It is easy to
see that HSP(A*) is always a subclass of [HSP(A)]* and that the equality
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holds for all total algebras and for all one-element algebras; Hoft furnishes
an example of a non-trivial partial algebra for which it does not.

The first observation is that H and S are not relevant in the consider-
ation of the problem.

LemMA 1. For any partial algebra A = (A, (f ;) S(A*) = [S(4)]*

Proof Let A, =(A,, (f “)fe,)e[S (A)]*. Define an inner completion Ao

= (A, (f* %)) of A so that for any feF, f*<f* and f 0|A1 =f4;
moreover, if (ay,...,ays)¢ Dom f4U Dom f™!, then f %@y,....an5) = ay.
A, is then a subalgebra of Ay, ie, A;eS(A*). On the other hand if A,
= (4,, (f Yer) is a subalgebra of some Aye A*, then it is an inner com-
pletion of the partial algebra (4,, (f | 4 l)fep )e S(A) and thus 4, e[S(4)]*. O

LEMMA 2. For any partial algebra A = (A, (f*;&) H(A*) = [H(A)]*.

Proof. H(A*) c [H(A)]* is obvious, since a homomorphic image of
an inner completion of 4 is a homomorphic image of. A — and it is a total
algebra. Let B = (B, ( f'),d)e H(A) and let h: A— B be an epimorphism.

Furthermore, let B, = (B, (f l) rer) be an inner completion of B. Define an
algebra A, = (A, (f '),ep) as follows let feF and a,,...,a,;€cA; put

A .
fA@ay,....,an5) if (ay,...,ay)€Dom f4
a otherwise

A
f l(al’---,an(f)) ={

where aeﬁ({ f®(h(ay), ..., h(ays))}). Then h is a homomorphism of a total
algebra A, e A* onto B,, which proves B, € H(A*). O

Unfortunately — and here is the essence of the problem — there is no
“Lemma 3” for products. Consider A = ({a, b}, f*4) with n(f) =1 and such
that f4(a) = b¢ Dom f4. There are two inner completions of A4, each of them
satisfying the equation f(x) =f3(x) (which is also true in P(A4*)). Define B
=({a, b} f® so that f®(a,a)=(b,b), f*(b,b)=(a,b), f"(a, b)=(b,0a)
and f®b,a)=(a,a). Then Be[P(A)]* and B¢P(A*), since f%(a, a)
# (f®3(a, a). Clearly P(A*) c [P(A)]* is always true.

We can however characterize equations valid in [P(A)]*. For a class )X~
of total algebras (of a given signature) let Eq(.¢) be the set of all equations
satisfied by all algebras in . If E is any set of equations, let E be its closure
(the smallest set of equations containing E and closed under identities,
symmetry, transitivity, substitution and the congruence condition). If 4 is a
partial algebra, let Eq,,(A) be the set of all total equations in 4, i.e., the set
of all equations p = g such that polynomials p# and ¢* induced by the terms
p and q in A are total and equal. For any equation ¢ let ¢, and ¢ denote
the left-hand and the right-hand side of ¢, correspondingly. If ¢ is an
equation in n variables, we write (4, a,,..., a,) = ¢ to state that' both ¢ and
o# are defined on a,,...,a, and the elements a,,...,a, of A satisfy ¢; A= ¢
means that (4, a,,...,a,)E ¢ for all a,,...,a, in A. For a set of equations
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E, AE E means A ¢ for all pe E. We write x, for a vector (x,,...,X,)
—
of variables or elements of an algebra and s, for a vector (s,,...,s,) of terms
— —>

or polynomials in an algebra. Thus, e.g, s,(x;) denotes a vector
(81 (Xg5- v Xi)s- .+, Su(Xy,..., X)) Of terms (when the s; are terms and the x; are
variables) or elements of an algebra (when the s; are polynomials and the x; '
are elements of the algebra)..

LemMa 3. For any partial algebra A = (A, (f*) ;o)
Eq([P(4)]*) = Eq, (A).

Proof. If ¢ is a total equation in A4, then it is also total in every
algebra in P(A) and thus in any inner completion of an algebra in P(A).
Therefore

Eq,, (4) = Eq([P(4)]*)

and consequently

Eq,. (4) < Eq([P(4)]*) = Eq([P(4)]*)

(the latter being a closed set of equations).

For any term p define inductively Fun(p) as follows:

if p= x for some variable x, then Fun(p) = 0;

if p=f(,) for some terms ¢, (i=1,...,n) and feF then Fun(p)
= Fun(t,)+ ... +Fun(t,)+ 1.

"Thus Fun(p) is the number of occurrences of operation symbols in p.
For any equation ¢ set Fun(¢) = Fun(¢,)+ Fun(gg).

Suppose now Eq([P(4)]*)—Eq,,(4) # @ and let ¢, be any equation in
this set with a minimal number of occurrences of operation symbols, i.e.,
Fun(g,) < Fun(o) for any equation ¢ in Eq([P(4)]*)—Eq.,(4), Memg
non-total in 4, it contains some non-total subterms. Again let f(tx)(x,))
be a subterm of ¢, (i.c., a subterm of ¢, or @y) non-total in 4 and such
that Fun(f (E;(x_;))) < Fun(p) for any non-total subterm p of ¢,. Thus the
terms t,-(x_;) are total in 4. Let ¢, be the equation obtained from ¢, by
substituting x,,, for f (?;;(x_,,S) all throughout ¢, (call ¢ the simplified
equation for ¢,). We may assume that for equations o satisfying the same

conditions as ¢,, Fun(¢y) < Fun(c’), where ¢’ is the simplified equation for
o. Then we have

LemMma 3a. If f (Zf_;(x,,ﬂ)) occurs in @y, then for some i with
l<i<n(f),

(s 1) = t:(%) ¢ Eqen (A).

Proof. If the lemma were not true, we would be able to find an
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equatlon ®, s1mpler than ¢,. Indeed, suppose f (r,,(,, (xn+1)) OCCurs in @g
and r; (x,,+1) =t (x,,)eEqm,(A) for all i, 1 <i< n(f). Let ¢} be the equation

obtained by substituting x,, , for each occurrence of f (r,,! 7 (Xp+1)) in @, and

let @, be the equation obtained by substituting f (E(}T(;;,’)) for each occur-
rence of x,., in @] (then ¢} is the simplified equation for ¢,). Clearly Fun(¢})
< Fun(¢p). Moreover, since ¢, is eventually built up from ¢, by replacing

every occurrence of f (Fus) (X1s-+ > Xus f (tup (Xn)) i @0 bY S (twp) (X)) and
Fun (f (%’(x_;))) < Fun (f Tn(s) (x,,..., Xn, f (?J(ZB))))

(either because the former is a subterm of the latter or by the assumption of
the minimality of ¢,), then also Fun(¢,) < Fun(¢,). Thus we shall have a

contradlctlon if we prove that ¢, eEq([P(4)]*)—Eq.(4). Since r;(x,+;)
= t;(x, )eEq(ot (A) for i=1,...,n(f), we have

S mgy s D) =1 (twpy (50)) €EQuos (A)

and consequently @z =@ and ¢, =@, are in Eq,o,(A) Thus

¢o¢ Eq,(4) implies ¢, ¢Eq,(4). Furthermore, since Eq,,(A)
c Eq([P(A)]*), we infer that for any Be[P(A)]*, BF ¢, = ¢o. and
BE ¢1x = @ox: hence Bi= @, iff Bl @o. This proves ¢,eEq([P(4)]*)—

—Eq,, (4), which contradicts the minimality of ¢, in that set. O

We return to the proof of Lemma 3. Since ¢¢¢Eq,,(4) and ¢, is
obtained from ¢ by putting f(ty(x,) instead of x,.,, then also

©o ¢ Eq,,, (4). Moreover, Fun(g,) < Fun(¢,) and therefore ¢y ¢ Eq([P(4)]*).
Thus there exists an algebra B = (B, (f®,s)e[P(4)]* and elements
"by,..., b+, €B such that

(l) (B9 bl""9bn+l)l5"é (Pz)

Let U‘fm(x..n) 1 <j <k} for some kew be the set of all n(f)-tuples of
terms su such that for every j with 1 <j <k, f(ryy (x—,,+_;)) occurs in ¢, and
ri® (b,,H) = ti'(b,,) It follows from Lemma 3a that for every j there exists an
ije{l,...,n(f)} such that ,j(m—t,j(x,,ﬁEqm(A). Observe also that

either r{j(xl, ,,,f(f;(;:))) or r{j(x_,3 is a subterm of ¢, as well as
f (tn(f) (xn))a SO Fun ('J (Xps1) =1 (xn)) < Fun(¢,), proving (xn+l)

(x,)¢-Eq ([P(A)]*) — again by minimality of ¢,. Thus for every j with

1 <j <k there exists an algebra C; =(C;, (f J)fep)e[P(A)]* and elements
d,. ,c{,HeC such that
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(2) (Cj,C"i’u-,cfan)# ’fj(m =tij(;:)-

Let A’ be any inner completion of A andset C = Bx A’ xC, x ... xC;; let
b =b;xa; xc! x...xck for i=1,...,n and b,,, = by, 1 xay xclox...
..xck. ., where a,,...,a,eA are such that f‘(t,,m(a,,)) is undefined in 4
(recall that f (afr(x_;)) is not total in A). Then

CeP([P(A)]*) = [P(P(A)]* = [P(A)]*

ie., Ce(AP)* for some ordinal B. (N.B., the proof can be done for the class of
completions of finite products instead of arbitrary ones, hence f can be
chosen as a finite ordinal. This is not essential for the sequel.) We infer by (1)
that (C, bi,..., b,,1)F @o. Define now an inner extension C, of the partial
algebra A” so that for any operation symbol geF,

gco(dl, cosy d"(g))

g¥d,,....dy,) if (dy,...,dy,)eDomg?,
g°(d,,...,dy,) if there are terms s,,..., 5, such that
=< (Q,,’(E,:’)) is a subterm of ¢, and
s€(Byey) =difor i = 1,...,n(g),
| undefined otherwise.

Such definition of C0 nmphes that both ¢g; and g, are defined in Co for

byey and @l (Bye 1) = O (Bysy) as well as @pP(Byr 1) = O (B 1).
Thus

(3) (C09 ,la--'ab,n+l)# ‘Ph
(Observe that C, is a minimal inner extension of A* satisfying this condition.)

We shall prove that f °(t,m (b, )) is not defined in C,. Indeed, by the

choice of the a’s, (X, (a,))¢ Dom f4 and so (£$9, (b)) ¢ Dom £ #. Moreover, if
Sts-os Swy) WeTE terms such that f (;,,’(x,,ﬂ)) occurs in (Po and s€(b,,,)

=t,~c(b;,) for all ie{l,...,n(f)}, then also s'(b H)—t'(b) for all i. This
means that for some j, 1 <j<k,

(Smry (Xn+ 1)) = (" :;(f) (Xn+ 1))
By the definition of C; we then have
sgj(c}';+ )= {'Cj(c’;’“) # ti(jj(cfﬁ- 1)

(by (2)) and consequently sc(b +1) ;é tc(b ) contrarily to our assumption on
the terms s;. Thus t,m(b )¢Dom fee.
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Now let C' be any inner completion of C, such that

) A (tﬁ'n (b;n)) =bpiy.

Then C'e[P(A)]*, being an inner completion of A. It follows from (3) that
(C, by,...,b, . )F @ and — recalling that ¢, is obtained from ¢g by
substituting  f (Z(;’(x_;)) for x,,; and taking (4) into account
(C, by,...,b) B @o. Hence ¢o¢Eq([P(A)]*) — contrarily to the initial as-
sumption. This completes the proof of the inclusion Eq([P(4)]*)

< Eqq(4). O
Now we are ready to state the main theorem:

THEOREM. For any partial algebra A,
HSP(4*) = [HSP(4)]* iff Eq,(4) =Eq(4*).

Proof. To prove the sufficiency it is enough to show that the equality
Eq,,.(4) = Eq(A4*) implies [HSP(A)]* = HSP(A*). Let B be any total algebra
in the class [HSP(A4)]*. By Lemmas 1 and 2, Be HS([P(4)]*) and hence
Bl= Eq([P(A4)]*). By Lemma 3, this is equivalent to Bl= Eq,,(4), which by
assumption implies B}= Eq(4*). Thus Be HSP(A*).

On the other hand, observe that Eq,,(4) = Eq(4*), since every total
equation which holds in A4 also holds in any inner completion of A. Thus we

have the following chain of inclusions and equalities, assuming HSP(A4*)
= [HSP(A)]* and using Lemmas 1, 2 and 3:

Eq.,(4) < Eq(4*) = Eq(HSP(4*)) = Eq([HSP(4)]*)
= Eq(HS([P(4)]*)) = Eq([P(4)]*) = Eq,,,(4),

thus proving Eq,,(4) = Eq(4*). O
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