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ON STRONG RIESZ SETS

BY

ROBERT E. DRESSLER axp LOUIS PIGNO (MANHATTAN, KANSAS)

Throughout this paper, T designates the circle group and M(T)
the convolution algebra of finite Borel measures on 7T. The dual group
of T is Z, the additive group of integers. As usual, the Fourier-Stieltjes
transformation is defined on M (T) by

A 1 r
jin) == f 6~du(0) (ne Z), where pe M(T).
TC

A subset S of Z is called a Riesz set if, for each ue M (T) with supp u < 8,
we infer that u is absolutely continuous with respect to Lebesgue measure
on T. In [3], Meyer formulated the concept of a strong Riesz set as follows:
8 = Z is a strong Riesz set if the closure of 8 in Z is a Riesz set, where Z
is armed with the relative topology of its Bohr compactification. The impor-
tance of the theory of strong Riesz sets resides in Theorem 2 of [3]: if §
is a strong Riesz set and H is a Riesz set, then 8§ UH is a Riesz set. In
propositions 4 and 3 of [3], Meyer proves that the set A of perfect squares,
and the set P of prime integers are both strong Riesz sets. In the present
paper, we extend both of these results. It is worth observing that, with
proposition 5 of [3], one can construct strong Riesz sets of positive integers
with density arbitrarily close to 1. On the other hand, there are sets of
density zero which are not strong Riesz sets (see [1]). Therefore, it appears
that it is the arithmetic properties and not the density properties which
are pertinent in the study of strong Riesz sets.

THEOREM 1. The set L = {a®+b%: a, be Z} is a strong Riesz sel.

Proof. It will be sufficient to establish that, for each n < 0, there
is a neighborhood of » (in Z with its relative Bohr topology) which misses L.
This shows that the closure of L is bounded below and hence, by the
classical F. and M. Riesz theorem, the closure of L is a Riesz set.

Now, Z, with its relative Bohr topology, has the property that,
for each ne Z, any arithmetic progression containing n is a neighborhood
of n. So, for each n < 0, consider the neighborhood of n given by the arith-
metic progression 0, = {n -+ 4n*k: ke Z}.
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We show that 0,NL = 0.

Since n+4n?k = (—n)(—1—4nk), we see that if —1—4nk <0,
then n-+4n%k¢ L. Also, —1 —4nk # 0,1 and so we may as well assume
—1—4nk >1. From [2], Theorem 7-8, we see that, for 1 >1, le L
if and only if, for each prime divisor p of I such that p =3 (mod 4), p occurs
with even multiplicity in the canonical factorization of I. But

(—my, —1—4nk) =1 and —1—4nk =3 (mod4),
and so n+4n2k¢ L. Thus, O,NnL =@ and we are done.

COROLLARY 1. If ue M (T) and supp u = D, where D 1is the set of negative
integers umion the set of integers which are the sum of two squares, then u 8
absolutely continuous with respect to Lebesgue measure.

This corollary is of interest in view of 5.7 of [4], p. 226, since it is not
known whether the set of integers which are the sums of two squares
is a A(1)-set. In this connection see 4.6 of [4], p. 219.

THEOREM 2. The set 8 = {ke Z*: if plk and nlk with pe P and
n >1, then pfn+1} is a strong Riesz set.

Proof. Let n < —1. We find an arithmetic progression containing n
which misses S. Consider the arithmetic progression {n-+3n%k} (keZ).
Since n+3n2k = —n(—1—3nk), we see that n-+3n2k is not in S if
—1—3nk < 0. Note also that —1 —3nk # 1 for all k. Thus, it remains to
show that n+3n2k¢ S if —1—3nk > 1. Since n < —1, it follows that
—n has a prime divisor, say, p. Then p|( —1—3nk)+ 1. Since —1 —3nk>1
and —1 —3nk is a factor of n+3n2k (as is p), it follows that n+3n2k¢ S.
This completes the proof.

COROLLARY 2. The set of prime powers i8 a strong Riesz set.

Proof. The set of prime powers is a subset of S.
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