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Introduction. The word space will refer to Tychonov spaces. A space X is
called functionally countable if each real-valued continuous function on X has
countable image. In the first part of this work we prove that all Baire functions
on a functionally countable space (not necessarily Lindelof) have countable
image, herewith solving a question raised by Levy and Rice ([10], Question 3,
P 1207). In fact, a slightly stronger result is proved in Theorem 1.

The second part deals with K-analytic spaces. A space X is called
K-analytic if it is the image of the Baire 0-dimensional product space N¥ under
an upper-semicontinuous compact-valued map. If this map is disjoint, then X
is called a K-Lusin space. The main result is Theorem 5 where we add some
new equivalent conditions to those already known which characterize
K-analytic spaces without compact perfect subsets ([18], p. 107). This result
simultaneously generalizes the Jayne Theorem ([9], Theorem 6) as well as some
characterizations of compact dispersed spaces due to Meyer [13], Pelczynski
and Semadeni [17], Levy and Rice [10]. '

As an application of our results we prove that a perfectly normal
K-analytic space is either the countable union of dispersed compact subspaces
or contains a compact perfect set. Finally, we also characterize the K-analytic
spaces X without compact perfect sets such that C*(X) is isometric to
BX(C(Y)), 1 <« < w,, for some space Y.

The results. As usual, C(X) will denote the ring of all continuous real-valued
functions on a space X. The set of all bounded functions in C(X) is denoted by
C*(X). The set of points of X where a member of C(X) is equal to zero is called
a zero-set. We shall denote by Z(X) the collegtion of all zero-sets of X.

By an algebra on X is meant a subring 4 of C(X) which separates points
and closed sets, contains the real constants and is closed under uniform
convergence and inversion (i.e., any function in A which has no zeros is
invertible in A4). In general, an algebra on X need not coincide with C(X), e.g.,
- the Baire functions on the real line R, viewed as an algebra on R with the
discrete topology. But when X is Lindel6f, the only algebra on X is C(X) ([15],
Corollary 4.7).
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Given an algebra A4 on X, let B,(A4) = A, and define B,(A) inductively for
each ordinal a to be the space of pointwise limits of sequences of functions in
U {B,(4): o <a}. If w, is the first uncountable ordinal, then B(A) = B, (A4)
= B, +1(A4), and the members of B(A) are called the Baire functions generated
by A.

1. THEOREM. Let A be an algebra on a space X. If each function in A has
countable image, then B(A) = B, (A) and each function in B(A) has countable
image.

Proof. Let feB,(A), let {f,}»-, be a sequence from B,(A) converging
pointwise to f and let {f,.}<-, be a sequence from A converging pointwise to
each f,, n=1,2,... We define '

@: X >RN*N
by
(P(X) = {fnm(x)}:,)m=l'

Clearly, ¢ is continuous. For each positive integer n define a function f, on
¢(X) by f,00 =f,. Then the sequence of projections {m,,}Z-, converges
pointwise to f, on @(X), and therefore

f.€B,(C(e(X))).

If f is the function defined on ¢(X) by foe =f, it follows that {f,}=,
converges pointwise to f on ¢(X), hence

feB,(C(e(X))).

Since A is closed under composition with continuous functions defined on
®(X) ([15], Theorem 4.9), the metric space ¢(X) is functionally countable. By
Remark (iii) in [10], ¢(X) is countable, therefore f(X) = f(¢(X)) is countable
and

B(C(¢(X))) = B, (C(@(X))). '

Then there exists a sequence {h,};-, in C(p(X)) converging pointwise on
@(X) to f. Consequently, {h,op}2, is a sequence in A4 which converges
pointwise to f, and hence fe B, (A).

Remark. As we shall see below, if X is K-analytic and

B(C(X)) = B,(C(X)),

then X is functionally countable. Assuming the continuum hypothesis, we can
see that there exists an uncountable subset S of the real line such that

B(C(S)) = B,(C(5))
([12], Example 5.2).
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A P-space is a (Tychonov) space in which each G,-set (or zero-set) is open.
The G;-topology of a space X is the topology having for a basis the family of all
G;-sets (or zero-sets) of X. Write bX for X provided with the associated
G,-topology. The collection Ba(X) of all Baire sets in X is the o-algebra
generated by the zero-sets of X. A collection # of subsets of X is completely
Baire-additive if the union of each subfamily of &# is a Baire set in X.

The following results are easily established and will be needed in the
sequel:

(F1) If S is a subset of X, then the G-topology on S is the restriction to S of
the G,-topology on X.

(F2) If X =) {S,: n=1,2,...} and for each n the space bS, is Lindeldf,
then bX is Lindelof.

(F3) If X is Lindelof and each point x in X has a neighborhood V(x) such
that bW(x) is Lindeldf, then bX is Lindeldf.

A space is realcompact if it is homeomorphic to a closed subset of
a product of real lines.

2. LEMMA. Let X be a realcompact space. If bX is not Lindeldf, then there is
a Baire set G in X such that bG and b(X\G) are not Lindelof.

Proof. The collection Ba(X) is a base for the closed sets of bX. Therefore,
if bX is not Lindelof, then there exists a Ba(X)-filter # which is closed
under countable intersections and (| ¥ =@. As X is realcompact, every
Ba(X)-ultrafilter closed under countable intersections has non-empty intersec-
tion (see [1], Theorem 4, and [5], Theorem 8.4). Therefore & is not
a Ba(X)-ultrafilter. Consequently, there is a Baire set G which does not belong
to # meeting every member of #. As (| # =@ and every Baire set in X is
closed and open (clopen) in bX, it follows that bG and b(X\G) are not
Lindelof.

3. LEMMA. Let S be a subset of a space Y such that every Baire set in S is
Lindelof. If bS is not Lindeldf, then in Y there exist disjoint closed sets F, and F,
such that b(F,nS) and b(F, N S) are not Lindeldf.

Proof. By Lemma 2 there is 3 Baire set G in S such that bG and b(S\G)
are not Lindelof. By our assumption, G and S\G are Lindelof, and by (F3) there
exist two points pe G and ge S\G such that if ¥, and V, are neighborhoods in
Yof p and g, respectively, then b(V; n G) and b(V, n(S\G)) are not Lindelof.
Let F, and F, be disjoint zero-set-neighborhoods in Y of p and g, re-
spectively.

The set F, n G is clopen in b(F; N S) because it is a Baire set in F; N S. As
b(F, n G) is not Lindeléf, b(F, N S) is not Lindelof. We conclude the proof by.
applying a similar argument to the set F, N S.

We say that a map K from a space E to the power set of a space X is
upper-semicontinuous if for each x in E and each open set U of X containing
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K(x) there is a neighborhood V of x with K(V)<c U. A'space X is called
K-analytic if it is of the form

X =KWN" = {J{K(o): seN"},

where K is an upper-semicontinuous map from NV to the compact sets of X.

We use N™ to denote the set of finite sequences of positive integers. For
each s = {s,, ..., s,} in N™ we will use I(s) to denote the set of points ¢ of NV
with g, =s5;, 1 <i<n. In the proof of Theorem 3.5.1 in [18], p. 63, the
following result is established:

4. THEOREM. Let X be a K-analytic space with a representation X = K(NV).
Suppose that for each finite sequence {n,, ..., 1,}, n; = 0 or 1, there are defined
a closed set H(n,, ..., n,) and a positive integer s(n,, ..., n,) satisfying

(@ H(ny, ..., M, J) < H(ny, .., m,) for each j = 1;

(b) K(I(s(r,l), vy S(Mys e e n,,)))n H(n,, ..., n,) is non-empty;

(c) for fixed n, the sets H(n,, ..., n,) are all disjoint.

Then X contains a compact perfect set.

The following is the main result:

5. THEOREM. The following conditions are equivalent for a K-analytic
space X:

(1) X contains no compact perfect sets.

(2) bX is Lindelof.

(3) If F is a subring of C* (bX) which contains all the real constants and
separates the points of X, then C(bX) = B, (F).

(4) C(bX) = B(C(X)).

"(5) bX is pseudo-N-compact (i.e., each locally finite family of open sets in
bX is countable). '

(6) X is functionally countable.

(7) B(C(X)) = B,(C(X)).

(8) B(C(X)) = B,(C(X)) for some a < w,.

(9) If F is a subring of C*(X) which is closed under bounded inversion (i.e.,
f, g€F, f/g bounded and g*> > 0 imply f /g € F) and contains a function which has
no zeros, then F is not isometric to C([O0, 1]).

Proof non(2)=non(l). Let X = K(N") be a representation of the
K-analytic space X. For each s in N™, write A(s) = K(I(s)) and note that

(%) A= {46 n: n=1,2,..}.

Suppose that bX is not Lindelof. Since every Baire set in X is K-analytic
([18], p. 23) and therefore Lindelof ([ 18], p. 36), by Lemma 3 there exist disjoint
closed sets H(0) and H(1) in X such that bH(0) and bH(1) are not Lindelof. By
(F2) and (*) we can choose positive integers s(0) and s(1) such that the sets
H(0)n A(s(0)) and H(1) n A(s(1)) are not Lindeldf in its G,-topology.
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For a fixed finite sequence {n,, ..., n,}, n; =0 or 1, suppose we have
defined the closed set in X, H(n,, ..., 1,), and_ the positive integer s(n,, ..., 1,)
so that the K-analytic set

H(nl’ e rp,,)n A(S(?h), seey s("l’ e nn))

is not Lindeldf in its G;-topology.
By Lemma 3 there exist disjoint closed sets in X, F(n,, ..., 1,, 0) and
F(n,,---, N,, 1) such that

F(’h& s ﬂn’j)ﬁH('h, cees '],,)_('\A(S(?]l), ceey S(”l’ cees "n))’ ] = 0’ 1’

is not Lindeldf in its G,-topology.
Put

H(nl’ ceey 'Imi) = F('h’ R} ”n’j)nH('h’ AR ﬂn)'
By (F2) and () we can choose positive integers

s(ny, cos My 0) and s(ny,..-5 1, 1)
such that

H(”l’ ceey 'In,f)ﬁA(S('h), cres S(ﬂl, tee "n’j))’ j= 0,1,

is not Lindelof in its G,-topology.

By an induction process, for each finite sequence {n,, ..., 1,}, 7, =0 or 1,
we have defined a closed set H(n,,...,n, in X and a positive integer
s(n,, ..., n,) satisfying the conditions of Theorem 4. Therefore X contains
a compact perfect set.

(2)=>(3). Let X, be the set X provided with the smallest topology such that
all functions in F are continuous. Since F separates the points of X, X, is
a Hausdorff space and, by Theorem 3.7 in [4], X, is Tychonov. The identity
from bX onto X, is continuous because F < C*(bX),  and since the
G;-topology of X, is the coarsest P-space topology finer than the original
topology of X, the identity from bX onto bX, is continuous. By assumption,
bX is Lindelof and, since every Lindelof subspace of a P-space is closed, we
infer that the identity from bX onto bX, is a closed map, and therefore
a homeomorphism. Then C(bX,) = C(bX).

On the other hand, Fis a subring of C*(X,) which contains all the real
constants (i.e., F is an algebra of bounded functions on X, in the terminology
of [2]) and the topology of X, is the smallest topology such that all functions
in F are continuous. Since X, is Lindelof, we have C(X,) < B, (F) ([2],
Theorem 2,E) and, consequently, B, (F)= B,(C(X,)). Now then bX, is
Lindelof, therefore C(bX ) is the only algebra on bX, ([15], Corollary 4.7), and
since B,(C(X,)) is an algebra on bX, ([12], Theorem 3.1), it follows that

CbX,) = Bl(C(XO)).
Then
C(bX) = C(bXo) = B,(C(X,)) = B, (F).
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(3)=(4) is immediate.

(4)=(5). We will employ the technique used in [10], Proposition 5.6. By
Theorem 2.6 in [20] it is enough to show that each discrete family of
non-empty open sets in bX is countable. (Recall that a family # of subsets of
a space is discrete if each point of the space has a neighborhood meeting at
most one element of %.) -

Let {U;: iel} be a discrete family of non-empty clopen sets in bX and, for
each iel, let h; be the characteristic function of U,. If J < I, then the function

is continuous on bX, so, by assumption,
f,eB(C(X)) and |J{U; ieJ}eBa(X).

Then {U;: iel} is a disjoint completely Baire-additive family on X. As X is
K-analytic, by Lemma 2 in [3] the set I is countable.

(5)=(6). This follows from the fact that every pseudo-N -compact P-space
is functionally countable.

(6)=(7). This follows immediately from Theorem 1.

(7)=>(8) i1s immediate.

(8)=(1). This implication is proved in [9], Theorem 1.

Thus we have established the equivalence of (1)+8).

(9)=(1). Suppose X contains a compact perfect subset K. Then there exists
a continuous map ¢ from K onto the unit interval [0, 1] ([17], p. 214) and by

the Tietze Extension Theorem we can extend ¢ to a continuous map ¢ from
X onto [0, 1]. Then

F = {go@: geC([0, 1])}

is a subring of C*(X) containing all the real constants, which is closed under
bounded inversion and isometric to C([O0, 1]).

non(9)=>non(6). Suppose F is a subring of C*(X) isometric to C([0, 1]),
which is closed under bounded inversion and contains a function f which
vanishes nowhere. If m and n are integers, n # 0, then m/n = mf/nf belongs to F,
hence F contains all the rational constants. By our assumption, F is complete
in the uniform norm, therefore F is closed and contains all the real constant
functions.

Consider the following equivalence relation in X: x = x’ if g(x) = g(x’) for
every ge F. Let Y be the set of all equivalence classes and let ¢ be the mapping
from X onto Ysuch that ¢(x) is the equivalence class that contains x. For each
geF, define a function § on Y by §(p(x)) = g(x), xe X, and set F = {g: geF}.
Now endow Y with the smallest topology such that all functions in F are
continuous. Then Y is Tychonov, ¢ is continuous and the mapping g—4 is
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a ring isomorphism from F onto F ([4], 3I). Since X is K-analytic and ¢ is
continuous, the space Y is K-analytic ([18], p. 23).
" Itis clear that F is a subring of C*(Y) which separates points and closed
sets in Y, contains all the real constants and is closed under uniform
convergence and bounded inversion. If A(F) is the algebra on Y generated by F,
then the set of all bounded functions in A(F) coincides with F ([16], Corollary
3.6). Since each K-analytic space is Lindel6f, Y is Lindelof, and therefore C(Y)
is the only algebra on Y. Thus C(Y) = A(F) and C*(Y)=F.

The mapping §— goe is a ring isomorphism from F onto F, therefore
F = C*(Y) is isometric to C([0, 1]) ([4], 1J). It is known that C*(Y) is ring
isomorphic with C(8Y), where BY denotes the Stone-Cech compactification of
Y. Thus C(BY) is isometric to C([0, 1]) and, by the Banach—Stone Theorem, gY
is homeomorphic to [0, 1]. Since a compact metric space cannot be the
Stone—Cech compactification of another space ([4], Corollary 9.6), it follows
that Y= BY. Then Y is homeomorphic to [0, 1] and X is not functionally
countable.

. Remarks. (a) The equivalence (1)<>(2) in Theorem 5 says that X does not
contain a perfect compact subset if and only if every covering of X consisting of
G;-sets contains a countable subcover. This in a natural way refers to the result
that an analytic set does not contain a perfect compact set if and only if it is
countable.

(b) The statement (3) in Theorem 5 can be considered as a Stone-
Weierstrass theorem for C(bX) (see [2]).

6. COROLLARY. If X is a K-analytic space which contains no compact
perfect sets and ¢ is a Baire-measurable map from X onto a space Y, then
Y contains no compact perfect sets. If, in addition, every point of Yis a G4-set, then
Y is countable.

Proof. Let us prove first that if a (Tychonov) space E contains a compact
perfect set K, then bE is not Lindeldf. In fact, let g be a continuous mapping
from K onto [0, 1]. Since E is Tychonov, g has an extension to a function h in
C(E) ([4], p- 43). The family {h™!(¢): te h(E)} is an uncountable discrete open
cover of bE, therefore bE is not Lindelof.

By our hypothesis, bX is Lindeléf and the map ¢ from bX onto bY is
continuous. Then bY is Lindeldf, and therefore Y contains no compact perfect
subsets. If every point of Yis a G,-set, then the family {{x}: xe Y} is an open
cover of bY. Since bY is Lindelof, there is a countable subcover, and therefore
Y is countable.

Remark. A different proofof Corollary 6 was given in [18], p. 106, under
the assumption that ¢ is continuous by applying Choquet’s Capacitability
Theorem. ' \

In [9], Theorem 4, it is proved that a K-Lusin space is either the countable
union of compact dispersed subspaces or contains a compact perfect set.
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However, there exist K-analytic spaces without compact perfect subsets which
are not g-compact ([19], [18], p. 103). In fact, we have the following result:

7. COROLLARY. Let X be a perfectly normal K-analytic space. Then one of
the following conditions holds: '

(1) X contains a compact perfect subset;

(2) X is the countable union of dispersed compact subspaces.

In addition, these conditions are mutually exclusive.

Proof. First, suppose that X contains a compact perfect set. Then there
exists a continuous map from X onto [0, 1], and therefore X is not functionally
countable. In this case X is not the countable union of dispersed compact
spaces, since every dispersed compact space is functionally countable.

Now suppose that X does not contain compact perfect subsets. Thus, by
Theorem 5, bX is Lindelof. If X = K(N¥) is a representation of X, then K (o) is
a compact zero-set for each e NV and the family {K(¢): € N} is an open
cover of bX. Since bX is Lindelof, there is a countable subcover and,
consequently, X is o-compact.

If X and Y are infinite dispersed compact spaces, then. C*(X) is not
isometric to BY(C(Y)) ([8], Theorem 5). However, this result does not hold for
K-analytic spaces without compact perfect subsets. For example, C* (N) is ring
isomorphic with the ring of bounded Baire functions of class 1 in the one-point
compactification of the discrete space N.

8. THEOREM. Let X be an infinite K-analytic space without compact perfect
subsets. Then C*(X) is isometric to B¥(C(Y)), 1 < « < w,, for some space Y if
and only if X is countable and contains a dense C*-embedded copy of N.

For the proof of this theorem we need some results.

9. LeMMA. If X is a K-analytic space in which each compact subset is finite,
then X is countable.

Proof. We denote by kX the set X with the topology whose closed sets
are precisely the sets meeting each compact subset of X in a compact set. As
each compact subset of X is finite, all points of kX are isolated.

Since X is K-analytic, so is kX ([18], p. 104), and hence kX is Lindelof. As
{{x}: xe X} is an open cover of kX, it follows that kX is countable.

Recall that a subspace S of a space E is C*-embedded in E if every function
in C*(S) can be extended to a function in C(E). A space is called basically
disconnected if the complement of every zero-set has an open closure. We write
vE for the smallest realcompact subspace of SE which contains E. A point x of
E is called a P-point if every G,-set (or zero-set) in E containing x is
a neighborhood of x. Thus E is a P-space if and only if every point of E is
a P-point.

10. LemMA. For any space E the following holds: _

(@) If E is dense in F, then every P-point in E is a P-point in F.

(b) Every P-point in BE belongs to vE.
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Proof. (a) Suppose that x is a P-point in E and let fe C(F). There is an
open set U in F such that xe U and the restriction of f to U n E is constant
([4], 4L). Then the restriction of f to cl.(U nE) is constant, and since
clpU = clg (U n E), it follows that f is constant in a neighborhood of x in F.
Hence x is a P-point in F.

(b) If x is a point in SE\VE, there is a zero-set Z in SE such that xe Z and
ZnvE =@ ([14], p. 947). Since vE is dense in BE, it follows that Z is not
a neighborhood of x in BE. Then x is not a P-point in BE.

The Baire sets of a space Y of multiplicative class a, denoted by Z,(Y), are
defined to be the zero-sets of functions in B¥(C(Y)) (the set of bounded
functions in B,(C(Y))). Those of additive class o, denoted by CZ,(Y), are
defined as the complements of sets in Z,(Y). The sets in

A,(Y) = Z,(Y)n CZ,(Y)

are called the sets of ambiguous class a. With the set-theoretic operations of
union and intersection, A4,(Y) is a Boolean algebra for each o < w,.

It is known (see the proof of Theorem 1 in [8]) that there exists
a compactification Y, of bY, which is homeomorphic to the Stone space 2, of
the Boolean algebra A,(Y), such that

B(C(Y)) = {flsy: feC(Y)}.

Therefore the spaces B¥(C(Y)) and C(Y,) are norm isometric. In the case
a = w, the Boolean algebra of clopen sets in Q, is g-complete, therefore the
compact spaces Q, and Y, are basically disconnected.

Proof of Theorem 8. The sufficiency of the condition is clear. Let us see
the necessity. Suppose that C*(X) is isometric to B¥(C(Y)), 1 < « < w,, for
some space Y. Then C(BX) is isometric to C(Y) and, according to the
Banach-Stone Theorem, there exists a homeomorphis}n ¢ from Y, onto BX.

By Lemma 10, each point z in bYis a P-point in Y,, hence ¢(z) is a P-point
in BX and ¢(z)evX. Since every Lindelof space is realcompact, X = vX. Thus
@ (bY) is a dense subspace of X. We do not distinguish notationally between bY
and @(bY). Therefore, each function in B¥(C(Y)) can be continuously extended
to BX. In particular, each function in C*(Y) admits a continuous extension
to X.

Let us see that Yis functionally countable. Let fe C(Y) and suppose that
S(Y) is not countable. Then there is a positive integer m such that the set
f(Y)n[—m, m] is not countable. The function g = min(| f|, m) isin C*(Y) and
g(Y) is not countable. If h is the continuous extension of g to X, it follows that
h(X) is not countable, which is a contradiction, because X is functionally
countable by Theorem 5.

Then Y is functionally countable and, by Theorem 1,

B,(C(Y)) = B(C(Y)).
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Therefore Z,(Y) is the o-algebra of the Baire sets in Y and the space Y, is
basically disconnected.

Since X is homeomorphic to Y,, we see that X is basically disconnected,
and therefore every infinite compact set in BX contains a copy of SN ([4],
14N.5). By assumption, X contains no compact perfect sets, therefore each
compact subset of X is finite. Since X is K-analytic, by Lemma 9 we see that
X is countable.

Then Y is countable, bY is homeomorphic to N and

B(C(Y)) = C*(N).

Since each function in B (C(Y)) admits a continuous extension to X, it follows
that bY is a dense C*-embedded copy of N.

11. COROLLARY. If K is an infinite dispersed compact space, then C(K) is
not isometric to B¥(C(Y)), 1 < a < w,, for any space Y.

The author wishes to thank the referee for his remarks.
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