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FIXED POINTS OF HOLOMORPHIC MAPPINGS
IN THE HILBERT BALL

BY

T. KUCZUMOW (LUBLIN)

A recent paper of Goebel et al. [2], in which the authors have studied
metrical convexity in the unit ball in a Hilbert space with a hyperbolic
metric and applied it to the theory of fixed points of holomorphic mappings,
was a motivation for our remarks placed in this paper. The results of theirs
and ours are closely related to the earlier work of Earle and Hamilton [1].

Let H be a complex Hilbert space and B the open unit ball in H. In B
we have the so-called hyperbolic metric (see [3])

e(x, y) =tanh™'(1-a(x, y))"/?,

where

(1 =11xl1?) (1 = Iyll?)
|1—(x’ y)lz .

This metric has nice properties (see [2]) and here we will show some more
New ones.
It is known [6] that in (B, g) every ball is an ellipsoid

-

o(x, y) =

z VllszI’ =k(ll)tll’—l)+1
L+k|x?>  (1+k])x]|?)?

1+kxP

if yedK(x, r), y=y,+y, (y; is the orthogonal projection of y on the span
-
vx!) and

1 +tanh?r
1-{Ix|1? -

If the dimension of H is not less than 2, then all balls centered at a non-zero
point in (B, @) are not balls in H. Next all these balls are uniformly convex in
a usual sense.
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LEMMA 1. A modulus of convexity
o(x,r,¢gt)
1
=1——supfe(x, ty+(1-02): e(x, ) <1, e(x,2) <1, 0y, 2) > er}
(xeB,0<r<ow,0<e<2,0<t <1) has the following properties:
(@) If imx, =x, limr, =r, lim¢, =¢, and limt, =t, then
o(x,r, g, t) < liminféd(x,, r,, &, t,)-

(b) If the conditions
1° {x,} is weakly convergent to x and lim||x,|| exists,
2 for y#z, y,ze B, we have

e(xn, Y) STy, Xy 2) <1, (n=1,2,..)
and
limr, =r,
3° e is orthogonal to x, y, z and
lIx+ell = lim||x,)|

are fulfilled, then

. y+z\ _[. 0,2 1
hmg(x,,,T)s[l 6(x+e,r,—r '3 r.

Proof. Since we may restrict our considerations to the three-dimension-
al Hilbert space H, the property (a) of our lemma is true. In (b) we have

o(x+e,y)<r, o(x+e,2)<r

. y+z y+z e(y,2) 1
| = z__ < ] — , T, y = .
hmg(x,,, 7 ) Q(x+e, > ) [1 6(x+e =]

CoroLLARY 1. Let X be a non-empty subset of B, closed in (B, g) and
convex in H. Then for any xe B there exists exactly one point ye X such that
o(x, y) =dist(x, X). This metrical projection is continuous.

Proof. The sequence of sets

{X,) = {{ze X: 9(x, 2) < dist(x, X)+l/n}}

and

consists of non-empty, bounded, closed and convex subsets of H, and hence

NX,#O.
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From (a) of Lemma 1 we infer that limdiam X, is equal to O and that this
projection is continuous.

Now we notice the following useful property of o:

LemMma 2. If sequences {x,} and {y,} of elements of B are weakly
convergent to xe€ B, then for any ye B we have

1— 2
0w M _ ;ix. yyLIM [Lyall

O'(Xm x) 1 _”xnllz’

where LIM denotes one of the following limits (the same on both sides of the
equality):

LIM

liminf ———

6 (Vn> ) : G (V> )
ctom ) RSP Y
liminfo(y,, y)  liminfa(y,, y)
liminfo(x,, x)) limsupa(x,, x)’

coy

whenever it makes sense.
Proof. Observe that

A= llyall*) (A = lIyll?)

U(y,., y) |1 —(ym y)lz
M——=LIM
H 0 (X, X) (1 =lixall %) (1 = 1x11%)
ll _(xm x)lz
A =llyaIP) A=yl
11—(x, y)?
= LIM
(1=l (1= l1x11%)
(1—1IxI1%)?
_ 1—Ily,)I°
= a(x, y) LIM m

This lemma implies a few corollaries.

CoroLLARY 2 (see the proof of Theorem 15 in [2]). Under the assump-
tions of Lemma 1 and ||yl 2 ||Ix,l| for n=1, 2, ... the following inequality is
true:

LIM a(yll’ y?
- (X, X)

<o(x,y).

CoroLLARY 3 (see Theorem 7 in [2]). If {x,} is a ¢-bounded sequence
which converges weakly to x, and y is an element of B, then

liminfo(x,, y) = 6(x, y)liminfeo (x,, x).
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As Goebel et al. [1] showed, an asymptotic center of a g-bounded
sequence is also a very useful tool in investigations of fixed points of
holomorphic mappings. We will give a few remarks on this matter.

Let X be a non-empty subset of B. We choose an arbitrary g-bounded
sequence {x,} and a point x in B. The number

r(x, {x,}) = limsupe(x,, x)
is called an asymptotic radius of {x,} at x, and the number
"x({xn}) = infr(x, {xn})
xeX

is an asymptotic radius of {x,} with respect to X (or in X). The set
A(X, {x}) = {xe X: r(x, {x,}) = rx({xa})}

is called an asymptotic center of {x,} in X.

In [2] it was proved that A(B, {x,}) contains only one point. Here we
will show some more.

THeOREM 1. If X is non-empty, closed in (B, @) and convex in H, then any
o-bounded sequence in B has asymptotic center in X containing only one

point.
Proof. Take ¢ >0 and put

AX, (x}, 8) = {xe X: r(x, () < ra({x)+e).

Notice that every 4A(X, {x,}, ¢) is a non-empty, bounded, closed and convex
subset of H. Therefore

A(X, {xn}) = ﬂ A(X, {xn}a £)

e>0

is non-empty and convex. To prove the uniqueness suppose that
y,2€ A(X, {x,}) and y # z. Thus we have

limsup g(x,, y) = rz({x,}),
limsup (x,, z) = ry({x.}),

. +2z . +z
lim supe (xns yT) = lim e (xli’ yT) = rX({xn})'

Hence for x, —x with lim||x,|| (see (b) of Lemma 1)

wl

: +z
0 <ry(ix,}) = hme(x..,., yT)

, 1
< [1—5.(x+e1 rX({xn})’ i((}: :’)) 2)] X(:xn})’

where e is chosen in a similar way as in (b) of Lemma 1. We get a
contradiction.
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Corollary 3 states that the weak limit of a weakly convergent g-bounded
sequence coincides with its asymptotic center in B. The next theorem will
show that the asymptotic center of any g-bounded sequence in B lies in the
e-convex closed hull of weak limits of its subsequences (see also Theorem 6

in [2]).

THEOREM 2. For every g-bounded sequence {x,} we have

A(B, !x,))€A = g-conv {xeB: \/ x, —~x],
o)

where g-conv denotes a @-convex closed hull.

Proof. Let us take y¢ B and let z be a metric projection of the element
y on the set 4 (see Theorem 3 in [2]). Then there exists a subsequence {x,,i}

such that
liminfo (x,, z) = limo(x,, 2)

and {x,i} is weakly convergent to xe A. Moreover, we have o (x, z) > o(x, y)
(see [2]). Thus

(1= llxgl1) (1 =li2ll?)

liminfo (x,, z) = limg(x,,, z) = lim

Il—(xnp z)lz
1—|lz|? . 1—lim||x, |2
=———(1=lim||x,||?) = 6(x, 2) —————
T=(x, 27 Ieally = o (% 2 =g

I-lim|ix,)I> 1)y
1-lId?  1—(x, )

=lima(x,, y) > liminfo(x,, ),

>a(x, y) I’(l —lim|x,}I%)

and therefore y cannot belong to the asymptotic center of {x,}.

Now we are concerned with holomorphic mappings. It is known that
each holomorphic mapping T: B — B is non-expansive in (B, p), i.e.,

e(Tx, H) <e(x,y) (x, yeB),

and for any points x, ye B there exists a biholomorphic mapping which
maps x on y and this mapping is obviously a g-isometry.

A subset X c B is said to be g-starshaped if there exists xe X such that
for every ye X the g-segment joining x with y lies in X.

THEOREM 3. Suppose T: B — B is holomorphic. Then T has a fixed point
iff there exists a g-starshaped subset X — B such that T(X) < X and the norm
closure T(X) is contained in B.

Proof. If FixT = {xeB: x = Tx} # @ and yeFix T, then it is sufficient
to take {y} in place of X. On the other hand, let X be such a g-starshaped
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set. Without loss of generality we may assume that Oe X. Then for every
ke N a sequence

{{1—1/k) TT"(0)}
is convergent to a point x,e B for which we have
(1—-1/k) Tx, = x,
(see [1]). It is evident that x, lies in the norm closure of T(X). Let us take a

subsequence {x,q} which converges weakly and let x be its limit. Then x must
be less than 1, |ix || <||Tx, /| and

a(hli, Tx)

<o(x, Tx
a(xki’ x) ( )

1 < limsup

(see Corollary 2). Thus x = Tx.

Remark. In fact, the above sequence is strong convergent to the fixed
point of T with the smallest norm (see Theorem 13 in [2]).

CoROLLARY 4. Suppose T: B — B is holomorphic and m < B (the norm
closure is used here). Then T has a fixed point in B and it is unique.

Proof. Since the set of fixed points of T is affine [2], it must contain
only one point by using the fact that ﬁ c B.

THEOREM 4. Suppose T: B — B is holomorphic with Fix T # (). Let X be
non-empty, closed in (B,g) and convex in H. If T(X)c< X, then
FixTnX # Q.

Proof 1. If xe X, then the sequence {T"x} is g-bounded and its
A(X, {T"x}) is a fixed point.
Proof 2. If xeFix T, then its g-projection on X is a fixed point.
Before proving the next theorem we must show the following lemma:
LemMma 3. If {{x]'}: m=1,2, ...} is a family of ¢-bounded sequences in
which every {x["} tends weakly to the same y and
rm =rg({x") 2@z, {xI"*'}) 2 rg({xI"*1}) =1+,

for m=1,2,... and a certain ze B, then z = y.
Proof. This result follows from the fact that

_, (tanh?(r,) —tanh?(r, . ;) \'/?
zeK(y, tanh ( 1—tanh?(r,,,,)

for every m (see Corollary 3).

THEOREM 5. Let T: B — B be a holomorphic mapping and let {T" x) be an
iterative sequence. Then {T" x} is weakly convergent to a fixed point of T iff

sup||T"xll <1 and T"*'x—T"x—0.
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Proof. Let a subsequence {T" x} be weakly convergent to y. Then, for

every m, {T'"'”'x} is also weakly convergent to y and
({T" " x}) 2 r(Ty, (T x]) 2 1 (T 1)),

Ty = y is a consequence of Lemma 3. Now it is easy to notice that for every
z =Tz we have

r(z, {T"x}) = limo(T"x, z),

and this completes the proof.

Remark. If in Lemma 3 we have a Banach space with the Opial
property [4] and a weakly compact set there, then for sequences in this set
Lemma 3 is true. To show this we have to use additionally the theorem of

Smulian (see [5]). Therefore, for a non-expansive mapping which maps this
set into itself the analogous theorem to Theorem 5 can be proved.
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